Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nature ; 534(7606): 267-71, 2016 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-27279226

RESUMEN

Zika virus (ZIKV) is an arbovirus belonging to the genus Flavivirus (family Flaviviridae) and was first described in 1947 in Uganda following blood analyses of sentinel Rhesus monkeys. Until the twentieth century, the African and Asian lineages of the virus did not cause meaningful infections in humans. However, in 2007, vectored by Aedes aegypti mosquitoes, ZIKV caused the first noteworthy epidemic on the Yap Island in Micronesia. Patients experienced fever, skin rash, arthralgia and conjunctivitis. From 2013 to 2015, the Asian lineage of the virus caused further massive outbreaks in New Caledonia and French Polynesia. In 2013, ZIKV reached Brazil, later spreading to other countries in South and Central America. In Brazil, the virus has been linked to congenital malformations, including microcephaly and other severe neurological diseases, such as Guillain-Barré syndrome. Despite clinical evidence, direct experimental proof showing that the Brazilian ZIKV (ZIKV(BR)) strain causes birth defects remains absent. Here we demonstrate that ZIKV(BR) infects fetuses, causing intrauterine growth restriction, including signs of microcephaly, in mice. Moreover, the virus infects human cortical progenitor cells, leading to an increase in cell death. We also report that the infection of human brain organoids results in a reduction of proliferative zones and disrupted cortical layers. These results indicate that ZIKV(BR) crosses the placenta and causes microcephaly by targeting cortical progenitor cells, inducing cell death by apoptosis and autophagy, and impairing neurodevelopment. Our data reinforce the growing body of evidence linking the ZIKV(BR) outbreak to the alarming number of cases of congenital brain malformations. Our model can be used to determine the efficiency of therapeutic approaches to counteracting the harmful impact of ZIKV(BR) in human neurodevelopment.


Asunto(s)
Modelos Animales de Enfermedad , Microcefalia/virología , Virus Zika/patogenicidad , Animales , Apoptosis , Autofagia , Encéfalo/patología , Encéfalo/virología , Brasil/epidemiología , Proliferación Celular , Femenino , Retardo del Crecimiento Fetal/patología , Retardo del Crecimiento Fetal/virología , Feto/virología , Ratones , Microcefalia/epidemiología , Microcefalia/etiología , Microcefalia/patología , Células-Madre Neurales/patología , Células-Madre Neurales/virología , Organoides/patología , Organoides/virología , Placenta/virología , Embarazo , Infección por el Virus Zika/complicaciones , Infección por el Virus Zika/epidemiología , Infección por el Virus Zika/patología , Infección por el Virus Zika/virología
2.
Physiology (Bethesda) ; 34(5): 365-375, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31389776

RESUMEN

Brain organoids recapitulate in vitro the specific stages of in vivo human brain development, thus offering an innovative tool by which to model human neurodevelopmental disease. We review here how brain organoids have been used to study neurodevelopmental disease and consider their potential for both technological advancement and therapeutic development.


Asunto(s)
Encéfalo/fisiopatología , Trastornos del Neurodesarrollo/fisiopatología , Organoides/fisiopatología , Animales , Humanos , Modelos Biológicos
3.
Hum Mol Genet ; 26(2): 270-281, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-28007906

RESUMEN

Rett syndrome (RTT) is an X-linked neurodevelopmental disorder in which the MECP2 (methyl CpG-binding protein 2) gene is mutated. Recent studies showed that RTT-derived neurons have many cellular deficits when compared to control, such as: less synapses, lower dendritic arborization and reduced spine density. Interestingly, treatment of RTT-derived neurons with Insulin-like Growth Factor 1 (IGF1) could rescue some of these cellular phenotypes. Given the critical role of IGF1 during neurodevelopment, the present study used human induced pluripotent stem cells (iPSCs) from RTT and control individuals to investigate the gene expression profile of IGF1 and IGF1R on different developmental stages of differentiation. We found that the thyroid hormone receptor (TRalpha 3) has a differential expression profile. Thyroid hormone is critical for normal brain development. Our results showed that there is a possible link between IGF1/IGF1R and the TRalpha 3 and that over expression of IGF1R in RTT cells may be the cause of neurites improvement in neural RTT-derived neurons.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina/genética , Proteína 2 de Unión a Metil-CpG/genética , Receptores de Somatomedina/genética , Síndrome de Rett/genética , Receptores alfa de Hormona Tiroidea/genética , Diferenciación Celular/genética , Cuerpos Embrioides/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Trastornos del Neurodesarrollo , Plasticidad Neuronal/genética , Neuronas/metabolismo , Neuronas/patología , Receptor IGF Tipo 1 , Síndrome de Rett/metabolismo , Síndrome de Rett/fisiopatología , Columna Vertebral/crecimiento & desarrollo , Columna Vertebral/patología , Sinapsis/genética , Sinapsis/patología , Transcriptoma/genética
4.
Mem Inst Oswaldo Cruz ; 113(5): e170385, 2018 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-29768530

RESUMEN

BACKGROUND: Zika virus (ZIKV) was recognised as a zoonotic pathogen in Africa and southeastern Asia. Human infections were infrequently reported until 2007, when the first known epidemic occurred in Micronesia. After 2013, the Asian lineage of ZIKV spread along the Pacific Islands and Americas, causing severe outbreaks with millions of human infections. The recent human infections of ZIKV were also associated with severe complications, such as an increase in cases of Guillain-Barre syndrome and the emergence of congenital Zika syndrome. OBJECTIVES: To better understand the recent and rapid expansion of ZIKV, as well as the presentation of novel complications, we compared the genetic differences between the African sylvatic lineage and the Asian epidemic lineage that caused the recent massive outbreaks. FINDINGS: The epidemic lineages have significant codon adaptation in NS1 gene to translate these proteins in human and Aedes aegypti mosquito cells compared to the African zoonotic lineage. Accordingly, a Brazilian epidemic isolate (ZBR) produced more NS1 protein than the MR766 African lineage (ZAF) did, as indicated by proteomic data from infections of neuron progenitor cells-derived neurospheres. Although ZBR replicated more efficiently in these cells, the differences observed in the stoichiometry of ZIKV proteins were not exclusively explained by the differences in viral replication between the lineages. MAIN CONCLUSIONS: Our findings suggest that natural, silent translational selection in the second half of 20th century could have improved the fitness of Asian ZIKV lineage in human and mosquito cells.


Asunto(s)
Codón/genética , Genoma Viral/genética , Proteínas no Estructurales Virales/genética , Infección por el Virus Zika/virología , Virus Zika/genética , África , Asia , Brasil/epidemiología , Humanos , Pandemias , Filogenia , Virus Zika/aislamiento & purificación , Infección por el Virus Zika/epidemiología
5.
Sci Rep ; 8(1): 1218, 2018 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-29352135

RESUMEN

The outbreak of the Zika virus (ZIKV) has been associated with increased incidence of congenital malformations. Although recent efforts have focused on vaccine development, treatments for infected individuals are needed urgently. Sofosbuvir (SOF), an FDA-approved nucleotide analog inhibitor of the Hepatitis C (HCV) RNA-dependent RNA polymerase (RdRp) was recently shown to be protective against ZIKV both in vitro and in vivo. Here, we show that SOF protected human neural progenitor cells (NPC) and 3D neurospheres from ZIKV infection-mediated cell death and importantly restored the antiviral immune response in NPCs. In vivo, SOF treatment post-infection (p.i.) decreased viral burden in an immunodeficient mouse model. Finally, we show for the first time that acute SOF treatment of pregnant dams p.i. was well-tolerated and prevented vertical transmission of the virus to the fetus. Taken together, our data confirmed SOF-mediated sparing of human neural cell types from ZIKV-mediated cell death in vitro and reduced viral burden in vivo in animal models of chronic infection and vertical transmission, strengthening the growing body of evidence for SOF anti-ZIKV activity.

7.
World J Transplant ; 5(4): 209-21, 2015 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-26722648

RESUMEN

Several diseases have been successfully modeled since the development of induced pluripotent stem cell (iPSC) technology in 2006. Since then, methods for increased reprogramming efficiency and cell culture maintenance have been optimized and many protocols for differentiating stem cell lines have been successfully developed, allowing the generation of several cellular subtypes in vitro. Gene editing technologies have also greatly advanced lately, enhancing disease-specific phenotypes by creating isogenic cell lines, allowing mutations to be corrected in affected samples or inserted in control lines. Neurological disorders have benefited the most from iPSC-disease modeling for its capability for generating disease-relevant cell types in vitro from the central nervous system, such as neurons and glial cells, otherwise only available from post-mortem samples. Patient-specific iPSC-derived neural cells can recapitulate the phenotypes of these diseases and therefore, considerably enrich our understanding of pathogenesis, disease mechanism and facilitate the development of drug screening platforms for novel therapeutic targets. Here, we review the accomplishments and the current progress in human neurological disorders by using iPSC modeling for Alzheimer's disease, Parkinson's disease, Huntington's disease, spinal muscular atrophy, amyotrophic lateral sclerosis, duchenne muscular dystrophy, schizophrenia and autism spectrum disorders, which include Timothy syndrome, Fragile X syndrome, Angelman syndrome, Prader-Willi syndrome, Phelan-McDermid, Rett syndrome as well as Nonsyndromic Autism.

8.
Mem. Inst. Oswaldo Cruz ; 113(5): e170385, 2018. tab, graf
Artículo en Inglés | LILACS | ID: biblio-894923

RESUMEN

BACKGROUND Zika virus (ZIKV) was recognised as a zoonotic pathogen in Africa and southeastern Asia. Human infections were infrequently reported until 2007, when the first known epidemic occurred in Micronesia. After 2013, the Asian lineage of ZIKV spread along the Pacific Islands and Americas, causing severe outbreaks with millions of human infections. The recent human infections of ZIKV were also associated with severe complications, such as an increase in cases of Guillain-Barre syndrome and the emergence of congenital Zika syndrome. OBJECTIVES To better understand the recent and rapid expansion of ZIKV, as well as the presentation of novel complications, we compared the genetic differences between the African sylvatic lineage and the Asian epidemic lineage that caused the recent massive outbreaks. FINDINGS The epidemic lineages have significant codon adaptation in NS1 gene to translate these proteins in human and Aedes aegypti mosquito cells compared to the African zoonotic lineage. Accordingly, a Brazilian epidemic isolate (ZBR) produced more NS1 protein than the MR766 African lineage (ZAF) did, as indicated by proteomic data from infections of neuron progenitor cells-derived neurospheres. Although ZBR replicated more efficiently in these cells, the differences observed in the stoichiometry of ZIKV proteins were not exclusively explained by the differences in viral replication between the lineages. MAIN CONCLUSIONS Our findings suggest that natural, silent translational selection in the second half of 20th century could have improved the fitness of Asian ZIKV lineage in human and mosquito cells.


Asunto(s)
Proteínas no Estructurales Virales/genética , Infección por el Virus Zika/epidemiología , Infección por el Virus Zika/virología , Brasil/epidemiología , Codón , Genoma Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA