Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Physiol Plant ; 176(4): e14460, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39091116

RESUMEN

Soil salinization is a major abiotic factor threatening rapeseed yields and quality worldwide, yet the adaptive mechanisms underlying salt resistance in rapeseed are not clear. Therefore, this study aimed to explore the differences in growth potential, sodium (Na+) retention in different plant tissues, and transport patterns between salt-tolerant (HY9) and salt-sensitive (XY15) rapeseed genotypes, which cultivated in Hoagland's nutrient solution in either the with or without of 150 mM NaCl stress. The results showed that the inhibition of growth-related parameters of the XY15 genotype was higher than those of the HY9 in response to salt stress. The XY15 had lower photosynthesis, chloroplast disintegration, and pigment content but higher oxidative damage than the HY9. Under NaCl treatment, the proline content in the root of HY9 variety increased by 8.47-fold, surpassing XY15 (5.41-fold). Under salt stress, the HY9 maintained lower Na+ content, while higher K+ content and exhibited a relatively abundant K+/Na+ ratio in root and leaf. HY9 also had lower Na+ absorption, Na+ concentration in xylem sap, and Na+ transfer factor than XY15. Moreover, more Na+ contents were accumulated in the root cell wall of HY9 with higher pectin content and pectin methylesterase (PME) activity than XY15. Collectively, our results showed that salt-tolerant varieties absorbed lower Na+ and retained more Na+ in the root cell wall (carboxyl group in pectin) to avoid leaf salt toxicity and induced higher proline accumulation as a defense and antioxidant system, resulting in higher resistance to salt stress, which provides the theoretical basis for screening salt resistant cultivars.


Asunto(s)
Brassica napus , Genotipo , Prolina , Estrés Salino , Tolerancia a la Sal , Sodio , Prolina/metabolismo , Brassica napus/genética , Brassica napus/efectos de los fármacos , Brassica napus/metabolismo , Brassica napus/fisiología , Sodio/metabolismo , Estrés Salino/genética , Tolerancia a la Sal/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/fisiología , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Raíces de Plantas/efectos de los fármacos , Cloruro de Sodio/farmacología , Fotosíntesis/efectos de los fármacos , Potasio/metabolismo
2.
Macromol Rapid Commun ; : e2400327, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38837533

RESUMEN

Tough and self-healing hydrogels are typically sensitive to loading rates or temperatures due to the dynamic nature of noncovalent bonds. Understanding the structure evolution under varying loading conditions can provide valuable insights for developing new tough soft materials. In this study, polyampholyte (PA) hydrogel with a hierarchical structure is used as a model system. The evolution of the microscopic structure during loading is investigated under varied loading temperatures. By combining ultra-small angle X-ray scattering (USAXS) and Mooney-Rivlin analysis, it is elucidated that the deformation of bicontinuous hard/soft phase networks is closely correlated with the relaxation dynamics or strength of noncovalent bonds. At high loading temperatures, the gel is soft and ductile, and large affine deformation of the phase-separated networks is observed, correlated with the fast relaxation dynamics of noncovalent bonds. At low loading temperatures, the gel is stiff, and nonaffine deformation occurs from the onset of loading due to the substantial breaking of noncovalent bonds and limited chain mobility as well as weak adaptation of phase deformation to external stretch. This work provides an in-depth understanding of the relationship between structure and performance of tough and self-healing hydrogels.

3.
Nat Commun ; 15(1): 5012, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866764

RESUMEN

Ferroptosis is an iron-dependent cell death that was discovered recently. For beneficial microbes to establish mutualistic relationships with hosts, precisely controlled cell death in plant cells is necessary. However, whether ferroptosis is involved in the endophyte‒plant system is poorly understood. Here, we reported that endophytic Streptomyces hygroscopicus OsiSh-2, which established a sophisticated and beneficial interaction with host rice plants, caused ferroptotic cell death in rice characterized by ferroptosis- and immune-related markers. Treatments with ferroptosis inhibitors and inducers, different doses of OsiSh-2, and the siderophore synthesis-deficient mutant ΔcchH revealed that only moderate ferroptosis induced by endophytes is essential for the establishment of an optimal symbiont to enhance plant growth. Additionally, ferroptosis involved in a defence-primed state in rice, which contributed to improved resistance against rice blast disease. Overall, our study provides new insights into the mechanisms of endophyte‒plant interactions mediated by ferroptosis and suggests new directions for crop yield promotion.


Asunto(s)
Resistencia a la Enfermedad , Endófitos , Ferroptosis , Oryza , Enfermedades de las Plantas , Streptomyces , Simbiosis , Oryza/microbiología , Oryza/genética , Oryza/inmunología , Ferroptosis/genética , Endófitos/fisiología , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Streptomyces/genética , Streptomyces/fisiología , Sideróforos/metabolismo , Hierro/metabolismo
4.
J Hazard Mater ; 465: 133206, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38134692

RESUMEN

Soil arsenic (As) phytoremediation has long faced the challenge of efficiently absorbing As by plant accumulators while maintaining their health and fast growth. Even at low doses, arsenic is highly toxic to plants. Therefore, plant growth-promoting microorganisms that can mediate As accumulation in plants are of great interest. In this study, the endophyte Enterobacter sp. YG-14 (YG-14) was found to have soil mobilization activity. By constructing a siderophore synthesis gene deletion mutant (ΔentD) of YG-14, the endophyte was confirmed to effectively mobilize Fe-As complexes in mining soil by secreting enterobactin, releasing bioavailable Fe and As to the rhizosphere. YG-14 also enhances As accumulation in host plants via extracellular polymer adsorption and specific phosphatase transfer protein (PitA) absorption. The root accumulation of As was positively correlated with YG-14 root colonization. In addition, YG-14 promoted plant growth and alleviated oxidative damage in R. pseudoacacia L. under arsenic stress. This is the first study, from phenotype, physiology, and molecular perspectives, to determine the role of endophyte in promoting As phytostabilization and maintaining the growth of the host plant. This demonstrated the feasibility of using endophytes with high siderophore production to assist host plants in As phytoremediation.


Asunto(s)
Arsénico , Contaminantes del Suelo , Arsénico/metabolismo , Enterobacter/metabolismo , Sideróforos/metabolismo , Endófitos , Plantas/metabolismo , Suelo , Biodegradación Ambiental , Contaminantes del Suelo/metabolismo
5.
Sci Adv ; 9(51): eadj6856, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38117876

RESUMEN

Soft materials with mechanical adaptability have substantial potential for various applications in tissue engineering. Gaining a deep understanding of the structural evolution and adaptation dynamics of soft materials subjected to cyclic stretching gives insight into developing mechanically adaptive materials. Here, we investigate the effect of hierarchy structure on the mechanical adaptation of self-healing hydrogels under cyclic stretching training. A polyampholyte hydrogel, composed of hierarchical structures including ionic bonds, transient and permanent polymer networks, and bicontinuous hard/soft-phase networks, is adopted as a model. Conditions for effective training, mild overtraining, and fatal overtraining are demonstrated in soft materials. We further reveal that mesoscale hard/soft-phase networks dominate the long-term memory effect of training and play a crucial role in the asymmetric dynamics of compliance changes and the symmetric dynamics of hydrogel shape evolution. Our findings provide insights into the design of hierarchical structures for adaptive soft materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA