Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Biol Chem ; 291(43): 22781-22792, 2016 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-27582493

RESUMEN

Class III myosins (MYO3A and MYO3B) are proposed to function as transporters as well as length and ultrastructure regulators within stable actin-based protrusions such as stereocilia and calycal processes. MYO3A differs from MYO3B in that it contains an extended tail domain with an additional actin-binding motif. We examined how the properties of the motor and tail domains of human class III myosins impact their ability to enhance the formation and elongation of actin protrusions. Direct examination of the motor and enzymatic properties of human MYO3A and MYO3B revealed that MYO3A is a 2-fold faster motor with enhanced ATPase activity and actin affinity. A chimera in which the MYO3A tail was fused to the MYO3B motor demonstrated that motor activity correlates with formation and elongation of actin protrusions. We demonstrate that removal of individual exons (30-34) in the MYO3A tail does not prevent filopodia tip localization but abolishes the ability to enhance actin protrusion formation and elongation in COS7 cells. Interestingly, our results demonstrate that MYO3A slows filopodia dynamics and enhances filopodia lifetime in COS7 cells. We also demonstrate that MYO3A is more efficient than MYO3B at increasing formation and elongation of stable microvilli on the surface of cultured epithelial cells. We propose that the unique features of MYO3A, enhanced motor activity, and an extended tail with tail actin-binding motif, allow it to play an important role in stable actin protrusion length and ultrastructure maintenance.


Asunto(s)
Actinas/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo III/metabolismo , Seudópodos/metabolismo , Actinas/genética , Animales , Células COS , Chlorocebus aethiops , Humanos , Cadenas Pesadas de Miosina/genética , Miosina Tipo III/genética , Seudópodos/genética
2.
J Neurosci ; 35(5): 1999-2014, 2015 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-25653358

RESUMEN

Approximately one-third of known deafness genes encode proteins located in the hair bundle, the sensory hair cell's mechanoreceptive organelle. In previous studies, we used mass spectrometry to characterize the hair bundle's proteome, resulting in the discovery of novel bundle proteins. One such protein is Xin-actin binding repeat containing 2 (XIRP2), an actin-cross-linking protein previously reported to be specifically expressed in striated muscle. Because mutations in other actin-cross-linkers result in hearing loss, we investigated the role of XIRP2 in hearing function. In the inner ear, XIRP2 is specifically expressed in hair cells, colocalizing with actin-rich structures in bundles, the underlying cuticular plate, and the circumferential actin belt. Analysis using peptide mass spectrometry revealed that the bundle harbors a previously uncharacterized XIRP2 splice variant, suggesting XIRP2's role in the hair cell differs significantly from that reported in myocytes. To determine the role of XIRP2 in hearing, we applied clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9-mediated genome-editing technology to induce targeted mutations into the mouse Xirp2 gene, resulting in the elimination of XIRP2 protein expression in the inner ear. Functional analysis of hearing in the resulting Xirp2-null mice revealed high-frequency hearing loss, and ultrastructural scanning electron microscopy analyses of hair cells demonstrated stereocilia degeneration in these mice. We thus conclude that XIRP2 is required for long-term maintenance of hair cell stereocilia, and that its dysfunction causes hearing loss in the mouse.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Células Ciliadas Auditivas/metabolismo , Audición , Proteínas con Dominio LIM/metabolismo , Proteínas Nucleares/metabolismo , Estereocilios/metabolismo , Animales , Células Cultivadas , Embrión de Pollo , Proteínas del Citoesqueleto , Proteínas de Unión al ADN/genética , Células Ciliadas Auditivas/fisiología , Pérdida Auditiva/genética , Proteínas con Dominio LIM/genética , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Proteínas Nucleares/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte de Proteínas , Ratas , Estereocilios/ultraestructura
3.
Sci Data ; 11(1): 416, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38653806

RESUMEN

Our sense of hearing is mediated by cochlear hair cells, of which there are two types organized in one row of inner hair cells and three rows of outer hair cells. Each cochlea contains 5-15 thousand terminally differentiated hair cells, and their survival is essential for hearing as they do not regenerate after insult. It is often desirable in hearing research to quantify the number of hair cells within cochlear samples, in both pathological conditions, and in response to treatment. Machine learning can be used to automate the quantification process but requires a vast and diverse dataset for effective training. In this study, we present a large collection of annotated cochlear hair-cell datasets, labeled with commonly used hair-cell markers and imaged using various fluorescence microscopy techniques. The collection includes samples from mouse, rat, guinea pig, pig, primate, and human cochlear tissue, from normal conditions and following in-vivo and in-vitro ototoxic drug application. The dataset includes over 107,000 hair cells which have been identified and annotated as either inner or outer hair cells. This dataset is the result of a collaborative effort from multiple laboratories and has been carefully curated to represent a variety of imaging techniques. With suggested usage parameters and a well-described annotation procedure, this collection can facilitate the development of generalizable cochlear hair-cell detection models or serve as a starting point for fine-tuning models for other analysis tasks. By providing this dataset, we aim to give other hearing research groups the opportunity to develop their own tools with which to analyze cochlear imaging data more fully, accurately, and with greater ease.


Asunto(s)
Cóclea , Animales , Ratones , Cobayas , Humanos , Ratas , Porcinos , Células Ciliadas Auditivas , Microscopía Fluorescente , Aprendizaje Automático
4.
bioRxiv ; 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37693382

RESUMEN

Our sense of hearing is mediated by cochlear hair cells, localized within the sensory epithelium called the organ of Corti. There are two types of hair cells in the cochlea, which are organized in one row of inner hair cells and three rows of outer hair cells. Each cochlea contains a few thousands of hair cells, and their survival is essential for our perception of sound because they are terminally differentiated and do not regenerate after insult. It is often desirable in hearing research to quantify the number of hair cells within cochlear samples, in both pathological conditions, and in response to treatment. However, the sheer number of cells along the cochlea makes manual quantification impractical. Machine learning can be used to overcome this challenge by automating the quantification process but requires a vast and diverse dataset for effective training. In this study, we present a large collection of annotated cochlear hair-cell datasets, labeled with commonly used hair-cell markers and imaged using various fluorescence microscopy techniques. The collection includes samples from mouse, human, pig and guinea pig cochlear tissue, from normal conditions and following in-vivo and in-vitro ototoxic drug application. The dataset includes over 90'000 hair cells, all of which have been manually identified and annotated as one of two cell types: inner hair cells and outer hair cells. This dataset is the result of a collaborative effort from multiple laboratories and has been carefully curated to represent a variety of imaging techniques. With suggested usage parameters and a well-described annotation procedure, this collection can facilitate the development of generalizable cochlear hair cell detection models or serve as a starting point for fine-tuning models for other analysis tasks. By providing this dataset, we aim to supply other groups within the hearing research community with the opportunity to develop their own tools with which to analyze cochlear imaging data more fully, accurately, and with greater ease.

5.
Sci Rep ; 12(1): 13764, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-35962067

RESUMEN

During hair cell development, the mechanoelectrical transduction (MET) apparatus is assembled at the stereocilia tips, where it coexists with the stereocilia actin regulatory machinery. While the myosin-based tipward transport of actin regulatory proteins is well studied, isoform complexity and built-in redundancies in the MET apparatus have limited our understanding of how MET components are transported. We used a heterologous expression system to elucidate the myosin selective transport of isoforms of protocadherin 15 (PCDH15), the protein that mechanically gates the MET apparatus. We show that MYO7A selectively transports the CD3 isoform while MYO3A and MYO3B transports the CD2 isoform. Furthermore, MYO15A showed an insignificant role in the transport of PCDH15, and none of the myosins tested transport PCDH15-CD1. Our data suggest an important role for MYO3A, MYO3B, and MYO7A in the MET apparatus formation and highlight the intricate nature of MET and actin regulation during development and functional maturation of the stereocilia bundle.


Asunto(s)
Protocadherinas , Estereocilios , Actinas/metabolismo , Miosinas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estereocilios/metabolismo
6.
Commun Biol ; 3(1): 5, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31925335

RESUMEN

The glycocalyx is a highly hydrated, glycoprotein-rich coat shrouding many eukaryotic and prokaryotic cells. The intestinal epithelial glycocalyx, comprising glycosylated transmembrane mucins, is part of the primary host-microbe interface and is essential for nutrient absorption. Its disruption has been implicated in numerous gastrointestinal diseases. Yet, due to challenges in preserving and visualizing its native organization, glycocalyx structure-function relationships remain unclear. Here, we characterize the nanoarchitecture of the murine enteric glycocalyx using freeze-etching and electron tomography. Micrometer-long mucin filaments emerge from microvillar-tips and, through zigzagged lateral interactions form a three-dimensional columnar network with a 30 nm mesh. Filament-termini converge into globular structures ~30 nm apart that are liquid-crystalline packed within a single plane. Finally, we assess glycocalyx deformability and porosity using intravital microscopy. We argue that the columnar network architecture and the liquid-crystalline packing of the filament termini allow the glycocalyx to function as a deformable size-exclusion filter of luminal contents.


Asunto(s)
Tomografía con Microscopio Electrónico , Glicocálix/química , Glicocálix/ultraestructura , Microscopía Intravital , Animales , Dextranos/química , Tomografía con Microscopio Electrónico/métodos , Técnica del Anticuerpo Fluorescente , Microscopía Intravital/métodos , Ratones , Microvellosidades/ultraestructura , Porosidad
7.
Nat Commun ; 11(1): 2066, 2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-32350269

RESUMEN

Mutations in myosin-VIIa (MYO7A) cause Usher syndrome type 1, characterized by combined deafness and blindness. MYO7A is proposed to function as a motor that tensions the hair cell mechanotransduction (MET) complex, but conclusive evidence is lacking. Here we report that multiple MYO7A isoforms are expressed in the mouse cochlea. In mice with a specific deletion of the canonical isoform (Myo7a-ΔC mouse), MYO7A is severely diminished in inner hair cells (IHCs), while expression in outer hair cells is affected tonotopically. IHCs of Myo7a-ΔC mice undergo normal development, but exhibit reduced resting open probability and slowed onset of MET currents, consistent with MYO7A's proposed role in tensioning the tip link. Mature IHCs of Myo7a-ΔC mice degenerate over time, giving rise to progressive hearing loss. Taken together, our study reveals an unexpected isoform diversity of MYO7A expression in the cochlea and highlights MYO7A's essential role in tensioning the hair cell MET complex.


Asunto(s)
Células Ciliadas Auditivas Internas/metabolismo , Mecanotransducción Celular , Miosina VIIa/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Proteínas de Ciclo Celular/metabolismo , Proteínas del Citoesqueleto/metabolismo , Eliminación de Gen , Células Ciliadas Auditivas Internas/ultraestructura , Pérdida Auditiva/metabolismo , Pérdida Auditiva/patología , Ratones Endogámicos C57BL , Miosina VIIa/química , Miosina VIIa/genética , Isoformas de Proteínas/metabolismo , Transporte de Proteínas , Estereocilios/metabolismo , Estereocilios/ultraestructura
8.
Nat Commun ; 10(1): 1117, 2019 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-30850599

RESUMEN

Sensory hair cells, the mechanoreceptors of the auditory and vestibular systems, harbor two specialized elaborations of the apical surface, the hair bundle and the cuticular plate. In contrast to the extensively studied mechanosensory hair bundle, the cuticular plate is not as well understood. It is believed to provide a rigid foundation for stereocilia motion, but specifics about its function, especially the significance of its integrity for long-term maintenance of hair cell mechanotransduction, are not known. We discovered that a hair cell protein called LIM only protein 7 (LMO7) is specifically localized in the cuticular plate and the cell junction. Lmo7 KO mice suffer multiple cuticular plate deficiencies, including reduced filamentous actin density and abnormal stereociliar rootlets. In addition to the cuticular plate defects, older Lmo7 KO mice develop abnormalities in inner hair cell stereocilia. Together, these defects affect cochlear tuning and sensitivity and give rise to late-onset progressive hearing loss.


Asunto(s)
Células Ciliadas Auditivas/fisiología , Audición/fisiología , Proteínas con Dominio LIM/deficiencia , Factores de Transcripción/deficiencia , Actinas/metabolismo , Animales , Cóclea/fisiología , Modelos Animales de Enfermedad , Células Ciliadas Auditivas/ultraestructura , Células Ciliadas Auditivas Internas/fisiología , Células Ciliadas Auditivas Internas/ultraestructura , Audición/genética , Pérdida Auditiva/etiología , Pérdida Auditiva/genética , Pérdida Auditiva/fisiopatología , Proteínas con Dominio LIM/genética , Proteínas con Dominio LIM/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Noqueados , Microscopía Electrónica de Rastreo , Estereocilios/genética , Estereocilios/fisiología , Estereocilios/ultraestructura , Factores de Transcripción/genética , Factores de Transcripción/fisiología
9.
Nat Commun ; 9(1): 2185, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29872055

RESUMEN

Functional mechanoelectrical transduction (MET) channels of cochlear hair cells require the presence of transmembrane channel-like protein isoforms TMC1 or TMC2. We show that TMCs are required for normal stereociliary bundle development and distinctively influence channel properties. TMC1-dependent channels have larger single-channel conductance and in outer hair cells (OHCs) support a tonotopic apex-to-base conductance gradient. Each MET channel complex exhibits multiple conductance states in ~50 pS increments, basal MET channels having more large-conductance levels. Using mice expressing fluorescently tagged TMCs, we show a three-fold increase in number of TMC1 molecules per stereocilium tip from cochlear apex to base, mirroring the channel conductance gradient in OHCs. Single-molecule photobleaching indicates the number of TMC1 molecules per MET complex changes from ~8 at the apex to ~20 at base. The results suggest there are varying numbers of channels per MET complex, each requiring multiple TMC1 molecules, and together operating in a coordinated or cooperative manner.


Asunto(s)
Cóclea/fisiología , Células Ciliadas Auditivas/fisiología , Mecanotransducción Celular/fisiología , Proteínas de la Membrana/metabolismo , Animales , Animales Recién Nacidos , Cóclea/citología , Cóclea/metabolismo , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Internas/fisiología , Células Ciliadas Auditivas Externas/metabolismo , Células Ciliadas Auditivas Externas/fisiología , Células Ciliadas Vestibulares/metabolismo , Células Ciliadas Vestibulares/fisiología , Mecanotransducción Celular/genética , Proteínas de la Membrana/genética , Ratones Noqueados , Ratones Transgénicos , Estereocilios/metabolismo , Estereocilios/fisiología
10.
Commun Biol ; 1: 50, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30271933

RESUMEN

Tight junctions consist of a network of sealing strands that create selective ion permeability barriers between adjoining epithelial or endothelial cells. The current model for tight junction strands consists of paired rows of claudins (Cldn) coupled by a cis interface (X-1) derived from crystalline Cldn15. Here we show that tight junction strands exhibit a broad range of lateral bending, indicating diversity in cis interactions. By combining protein-protein docking, coevolutionary analysis, molecular dynamics, and a mutagenesis screen, we identify a new Cldn-Cldn cis interface (Cis-1) that shares interacting residues with X-1 but has an ~ 17° lateral rotation between monomers. In addition, we found that a missense mutation in a Cldn14 that causes deafness and contributes stronger to Cis-1 than to X-1 prevents strand formation in cultured cells. Our results suggest that Cis-1 contributes to the inherent structural flexibility of tight junction strands and is required for maintaining permeability barrier function and hearing.

11.
Sci Rep ; 8(1): 8706, 2018 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-29880844

RESUMEN

Whole-exome sequencing of samples from affected members of two unrelated families with late-onset non-syndromic hearing loss revealed a novel mutation (c.2090 T > G; NM_017433) in MYO3A. The mutation was confirmed in 36 affected individuals, showing autosomal dominant inheritance. The mutation alters a single residue (L697W or p.Leu697Trp) in the motor domain of the stereocilia protein MYO3A, leading to a reduction in ATPase activity, motility, and an increase in actin affinity. MYO3A-L697W showed reduced filopodial actin protrusion initiation in COS7 cells, and a predominant tipward accumulation at filopodia and stereocilia when coexpressed with wild-type MYO3A and espin-1, an actin-regulatory MYO3A cargo. The combined higher actin affinity and duty ratio of the mutant myosin cause increased retention time at stereocilia tips, resulting in the displacement of the wild-type MYO3A protein, which may impact cargo transport, stereocilia length, and mechanotransduction. The dominant negative effect of the altered myosin function explains the dominant inheritance of deafness.


Asunto(s)
Genes Dominantes , Enfermedades Genéticas Congénitas/genética , Pérdida Auditiva/genética , Mutación Missense , Cadenas Pesadas de Miosina/genética , Miosina Tipo III/genética , Actinas/genética , Actinas/metabolismo , Adolescente , Adulto , Anciano , Sustitución de Aminoácidos , Animales , Brasil , Células COS , Movimiento Celular/genética , Niño , Chlorocebus aethiops , Femenino , Enfermedades Genéticas Congénitas/metabolismo , Enfermedades Genéticas Congénitas/patología , Pérdida Auditiva/metabolismo , Pérdida Auditiva/patología , Humanos , Masculino , Persona de Mediana Edad , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo III/metabolismo , Seudópodos/genética , Seudópodos/metabolismo , Seudópodos/patología , Estereocilios/genética , Estereocilios/metabolismo , Estereocilios/patología
13.
Cell Rep ; 15(5): 935-943, 2016 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-27117407

RESUMEN

WHRN (DFNB31) mutations cause diverse hearing disorders: profound deafness (DFNB31) or variable hearing loss in Usher syndrome type II. The known role of WHRN in stereocilia elongation does not explain these different pathophysiologies. Using spontaneous and targeted Whrn mutants, we show that the major long (WHRN-L) and short (WHRN-S) isoforms of WHRN have distinct localizations within stereocilia and also across hair cell types. Lack of both isoforms causes abnormally short stereocilia and profound deafness and vestibular dysfunction. WHRN-S expression, however, is sufficient to maintain stereocilia bundle morphology and function in a subset of hair cells, resulting in some auditory response and no overt vestibular dysfunction. WHRN-S interacts with EPS8, and both are required at stereocilia tips for normal length regulation. WHRN-L localizes midway along the shorter stereocilia, at the level of inter-stereociliary links. We propose that differential isoform expression underlies the variable auditory and vestibular phenotypes associated with WHRN mutations.


Asunto(s)
Empalme Alternativo/genética , Células Ciliadas Auditivas/metabolismo , Mecanotransducción Celular , Proteínas de la Membrana/genética , Estereocilios/metabolismo , Animales , Fenómenos Electrofisiológicos , Células Ciliadas Auditivas/ultraestructura , Proteínas de la Membrana/metabolismo , Ratones , Fenotipo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estereocilios/ultraestructura , Vestíbulo del Laberinto/fisiología
14.
Nat Commun ; 7: 10833, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26926603

RESUMEN

Hair cells tightly control the dimensions of their stereocilia, which are actin-rich protrusions with graded heights that mediate mechanotransduction in the inner ear. Two members of the myosin-III family, MYO3A and MYO3B, are thought to regulate stereocilia length by transporting cargos that control actin polymerization at stereocilia tips. We show that eliminating espin-1 (ESPN-1), an isoform of ESPN and a myosin-III cargo, dramatically alters the slope of the stereocilia staircase in a subset of hair cells. Furthermore, we show that espin-like (ESPNL), primarily present in developing stereocilia, is also a myosin-III cargo and is essential for normal hearing. ESPN-1 and ESPNL each bind MYO3A and MYO3B, but differentially influence how the two motors function. Consequently, functional properties of different motor-cargo combinations differentially affect molecular transport and the length of actin protrusions. This mechanism is used by hair cells to establish the required range of stereocilia lengths within a single cell.


Asunto(s)
Proteínas de Microfilamentos/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo III/metabolismo , Estereocilios/fisiología , Animales , Células COS , Chlorocebus aethiops , Oído Interno/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Microfilamentos/genética , Cadenas Pesadas de Miosina/genética , Miosina Tipo III/genética , Ratas , Técnicas de Cultivo de Tejidos
15.
Cell Rep ; 12(10): 1606-17, 2015 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-26321635

RESUMEN

Mechanosensitive ion channels at stereocilia tips mediate mechanoelectrical transduction (MET) in inner ear sensory hair cells. Transmembrane channel-like 1 and 2 (TMC1 and TMC2) are essential for MET and are hypothesized to be components of the MET complex, but evidence for their predicted spatiotemporal localization in stereocilia is lacking. Here, we determine the stereocilia localization of the TMC proteins in mice expressing TMC1-mCherry and TMC2-AcGFP. Functionality of the tagged proteins was verified by transgenic rescue of MET currents and hearing in Tmc1(Δ/Δ);Tmc2(Δ/Δ) mice. TMC1-mCherry and TMC2-AcGFP localize along the length of immature stereocilia. However, as hair cells develop, the two proteins localize predominantly to stereocilia tips. Both TMCs are absent from the tips of the tallest stereocilia, where MET activity is not detectable. This distribution was confirmed for the endogenous proteins by immunofluorescence. These data are consistent with TMC1 and TMC2 being components of the stereocilia MET channel complex.


Asunto(s)
Cilios/metabolismo , Células Ciliadas Auditivas Internas/fisiología , Proteínas de la Membrana/metabolismo , Animales , Cilios/ultraestructura , Femenino , Expresión Génica , Células Ciliadas Auditivas Internas/ultraestructura , Masculino , Mecanotransducción Celular , Proteínas de la Membrana/genética , Ratones Transgénicos , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA