Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanotechnology ; 32(27)2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33765660

RESUMEN

Both poor electron conductivity and low ion diffusion of electrode materials are two main issues limiting the rate performance of pseudocapacitors. The present work reports the design and fabrication of hierarchically nano-architectured electrodes consisting of sulfide vacancies enhanced Ni-Co-S nanoparticle covering bent nickel nano-forest (BNNF). We propose new insight into vastly increased ion-accessible active sites and fast charge storage/delivery enhanced the reaction kinetics. The Ni-Co-S@BNNF electrode exhibits extremely high rate performance with 90.1% capacity retention from 1 to 20 A g-1, and even still remains 83.6% capacity at 40 A g-1, much superior to reported NiCo2S4-based electrodes. The high rate performance is attributed to the unique nano-architecture providing increased ion availability of electrochemically active sites and high conductivity for fast electron transport. Especially the electrode achieves remarkable long-term cycle stability with more than 100% initial capacity value after 5000 cycles at 5 A g-1and exhibits excellent cycle reversibility even at 20 A g-1. Goog cycle stability should be attributed to the sulfide vacancies in Ni-Co-S nano-branches and the electrode architecture sustaining structural strain during fast redox reactions. An asymmetric pseudocapacitor applying such electrode achieves a high energy density of 99.9 W h kg-1and exhibits superior cycling stability at a high current density of 20 A g-1. This study underscores the potential importance of developing nanoarrays covered with highly redox-active materials with increasing ions/charge kinetics for energy storage.

2.
Langmuir ; 32(15): 3670-8, 2016 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-27052643

RESUMEN

In this Article, two readily available polymers that contain silicon and have different surface tensions, polydimethylsiloxane (PDMS) and polyphenylsilsequioxane (PPSQ), were used to produce polymer blends with polystyrene (PS). Spin-coated thin films of the polymer blends were treated by O2 reactive-ion etching (RIE). The PS constituent was selectively removed by O2 RIE, whereas the silicon-containing phase remained because of the high etching resistance of silicon. This selective removal of PS substantially enhanced the contrast of the phase separation morphologies for better scanning electron microscope (SEM) and atomic force microscope (AFM) measurements. We investigated the effects of the silicon-containing constituents, polymer blend composition, concentration of the polymer blend solution, surface tension of the substrate, and the spin-coating speed on the ultimate morphologies of phase separation. The average domain size, ranging from 100 nm to 10 µm, was tuned through an interplay of these factors. In addition, the polymer blend film was formed on a pure organic layer, through which the aspect ratio of the phase separation morphologies was further amplified by a selective etching process. The formed nanostructures are compatible with existing nanofabrication techniques for pattern transfer onto substrates.

3.
Nanotechnology ; 24(46): 465304, 2013 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-24164740

RESUMEN

A challenge in the fabrication of nanostructures into non-planar substrates is to form a thin, uniform resist film on non-planar surfaces. This is critical to the fabrication of nanostructures via a lithographic technique due to the subsequent pattern transfer process. Here we report a new double transfer UV-curing nanoimprint technique that can create a nanopatterned thin film with a uniform residual layer not only on flat substrates but also on highly curved surfaces. Surface relief gratings with pitches down to 200 nm are successfully imprinted on the cylindrical surface of optical fibers, and further transferred into a SiO2 matrix using reactive ion etching (RIE), demonstrating that our technique is applicable for fabricating high-resolution nanostructures on non-planar substrates.

4.
ACS Appl Mater Interfaces ; 15(40): 47790-47798, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37769290

RESUMEN

High-efficiency electrocatalytic water splitting requires high intrinsic activity of catalysts and even more importantly favorable mass transfer. However, gas bubbles adhering to the surface of catalysts limit the re-expose of catalytic active sites to the electrolyte and reduce the catalytic activities. The efficient desorption of bubbles can be facilitated by a hierarchical multiscale structure of the electrode surface. Herein, we report an opened periodic three-dimensional electrode composed of iron (Fe)-cobalt (Co)-nickel (Ni) (oxy)hydroxide nanorods (NRs) grown in situ on a high aspect ratio nickel microcolumn array (NCA) for electrocatalytic water splitting. Compared with the flat nickel plate, the NCA not only increases the surface area for catalyst loading but also improves the wettability of the electrolyte on the electrode surface, exhibiting superhydrophilicity/superaerophobicity (the electrolyte and the bubble contact angles were about ∼0 and 163°, respectively), which accelerates the bubble evolution and desorption process. The X-ray photoelectron spectroscopy indicates that the synergy of Fe-Co-Ni could enhance the ratio of Co3+/Co2+ and Ni3+/Ni2+ and promote the electrocatalytic activity. Benefiting from the microstructure design and synergistic effects, the Co4Fe0.5Ni0.5OOH-NR@NCA electrode achieves a superior OER performance with an overpotential of 199 mV at 10 mA·cm-2.

5.
Adv Mater ; 35(8): e2209500, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36462219

RESUMEN

Hindered gas bubble release and limited electron conducting process represent the major bottlenecks for large-scale electrochemical water splitting. Both the desorption of bubbles and continuous electron transport are achievable on the surfaces of biomimetic catalytic materials by designing multiscale structural hierarchy. Inspired by the tubular structures of the deep-sea sponges, an exceptionally active and binder-free porous nickel tube arrays (PNTA) decorated with NiFe-Zn2+ -pore nanosheets (NiFe-PZn ) are fabricated. The PNTA facilitate removal of bubbles and electron transfer in the oxygen evolution reaction by reproducing trunks of the sponges, and simultaneously, the NiFe-PZn increase the number of catalytic active sites by simulating the sponge epidermis. With improved external mass transfer and interior electron transfer, the hierarchical NiFe-PZn @PNTA electrode exhibits superior oxygen evolution reaction performance with an overpotential of 172 mV at 10 mA cm-2 (with a Tafel slope of 50 mV dec-1 ). Furthermore, this electrocatalytic system recorded excellent reaction stability over 360 h with a constant current density of 100 mA cm-2 at the potential of 1.52 V (versus RHE). This work provides a new strategy of designing hierarchical electrocatalysts for highly efficient water splitting.

6.
Materials (Basel) ; 14(4)2021 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-33670359

RESUMEN

Metallic nanomesh, one of the emerging transparent conductive film (TCF) materials with both high electrical conductivity and optical transmittance, shows great potential to replace indium tin oxide (ITO) in optoelectronic devices. However, lithography-fabricated metallic nanomeshes suffer from an iridescence problem caused by the optical diffraction of periodic nanostructures, which has negative effects on display performance. In this work, we propose a novel approach to fabricate large-scale metallic nanomesh as TCFs on flexible polyethylene terephthalate (PET) sheets by maskless phase separation lithography of polymer blends in a low-cost and facile process. Polystyrene (PS)/polyphenylsilsequioxane (PPSQ) polymer blend was chosen as resist material for phase separation lithography due to their different etching selectivity under O2 reactive ion etching (RIE). The PS constituent was selectively removed by O2 RIE and the remained PPSQ nanopillars with varying sizes in random distribution were used as masks for further pattern transfer and metal deposition process. Gold (Au) nanomeshes with adjustable nanostructures were achieved after the lift-off step. Au nanomesh exhibited good optoelectronic properties (RS = 41 Ω/sq, T = 71.9%) and non-iridescence, without angle dependence owing to the aperiodic structures of disordered apertures. The results indicate that this Au nanomesh has high potential application in high-performance and broad-viewing-angle optoelectronic devices.

7.
Langmuir ; 26(18): 14502-8, 2010 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-20722378

RESUMEN

Polydimethylsiloxane-graft-poly(ethylene oxide) (PDMS-g-PEO) copolymers form micelles in water with PDMS as the core and PEO as the corona. The introduction of poly(acrylic acid)-block-polyacrylonitrile (PAA-b-PAN) block copolymers in water leads to the formation of micellar complexes due to the hydrogen bonding between carboxyl groups and ether oxygens among the PAA and PEO chains in the corona of the micelles. The effects of pH, molar ratios (r) of PAA/PEO, and the standing time on the directly mixing these two micelles in water have been investigated using laser light scattering (LLS) and transmission electron microscopy (TEM). Our results showed that the complexation between PAA and PEO in the corona was greatly enhanced at a pH below 3.5. For a fixed pH value, the interactions between these two micelles in water were governed by the value of r. At r < ∼0.6, mixing the two micelles in water resulted in a large floccule because the smaller PAA-b-PAN micelles act as physical cross-links, which are absorbed onto one PDMS-g-PEO micelle and simultaneously bonded to PEO chains on the other micelles, forming bridges and causing flocculation. At ∼0.6 < r < ∼1.2, the mixing led to stable micellar complexes with a layer of PAA-b-PAN micelles absorbed onto the initial PDMS-g-PEO micelles. At r > ∼1.2, the resultant micellar complexes first remained stable, but they precipitated from solution after a long time standing.

8.
ACS Nano ; 14(10): 12719-12731, 2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-32936616

RESUMEN

Pseudocapacitance holds great promise for energy density improvement of supercapacitors, but electrode materials show practical capacity far below theoretical values due to limited ion diffusion accessibility and/or low electron transferability. Herein, inducing two kinds of straight ion-movement channels and fast charge storage/delivery for enhanced reaction kinetics is proposed. Very thick electrodes consisting of vertically aligned and ordered arrays of NiCo2S4-nanoflake-covered slender nickel columns (NCs) are achieved via a scalable route. The vertical standing ∼5 nm ultrathin NiCo2S4 flakes build a porous covering with straight ion channels without the "dead volume", leading to thickness-independent capacity. Benefiting from the architecture acting as a "superhighway" for ultrafast ion/electron transport and providing a large surface area, high electrical conductivity, and abundant availability of electrochemical active sites, the NiCo2S4@NC-array electrode achieves a specific capacity up to 486.9 mAh g-1. The electrode even can work with a high specific capacity of 150 mAh g-1 at a very high current density of 100 A g-1. In particular, due to the advanced structure features, the electrode exhibits excellent flexibility with a unexpected improvement of capacity when being largely bent and excellent cycling stability with an obvious resistance decrease after the cycles. An asymmetric pseudocapacitor applying the NiCo2S4@NC-array as a positive electrode achieves an energy density of 66.5 Wh kg-1 at a power density of 400 W kg-1, superior to the most reported values for asymmetric devices with NiCo2S4 electrodes. This work provides a scalable approach with mold-replication-like simplicity toward achieving thickness-independent electrodes with ultrafast ion/electron transport for energy storage.

9.
Micromachines (Basel) ; 10(5)2019 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-31117326

RESUMEN

Thermal nanoimprint lithography is playing a vital role in fabricating micro/nanostructures on polymer materials by the advantages of low cost, high throughput, and high resolution. However, a typical thermal nanoimprint process usually takes tens of minutes due to the relatively low heating and cooling rate in the thermal imprint cycle. In this study, we developed an induction heating apparatus for the thermal imprint with a mold made of ferromagnetic material, nickel. By applying an external high-frequency alternating magnetic field, heat was generated by the eddy currents and magnetic hysteresis losses of the ferromagnetic nickel mold at high speed. Once the external alternating magnetic field was cut off, the system would cool down fast owe to the small thermal capacity of the nickel mold; thus, providing a high heating and cooling rate for the thermal nanoimprint process. In this paper, nanostructures were successfully replicated onto polymer sheets with the scale of 4-inch diameter within 5 min.

10.
ACS Appl Mater Interfaces ; 9(15): 13685-13693, 2017 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-28361542

RESUMEN

We demonstrated a simple and effective approach to fabricate dense and high aspect ratio sub-50 nm pillars based on phase separation of a polymer blend composed of a cross-linkable polysiloxane and polystyrene (PS). In order to obtain the phase-separated domains with nanoscale size, a liquid prepolymer of cross-linkable polysiloxane was employed as one moiety for increasing the miscibility of the polymer blend. After phase separation via spin-coating, the dispersed domains of liquid polysiloxane with sub-50 nm size could be solidified by UV exposure. The solidified polysiloxane domains took the role of etching mask for formation of high aspect ratio nanopillars by O2 reactive ion etching (RIE). The aspect ratio of the nanopillars could be further amplified by introduction of a polymer transfer layer underneath the polymer blend film. The effects of spin speeds, the weight ratio of the polysiloxane/PS blend, and the concentration of polysiloxane/PS blend in toluene on the characters of the nanopillars were investigated. The gold-coated nanopillar arrays exhibited a high Raman scattering enhancement factor in the range of 108-109 with high uniformity across over the wafer scale sample. A superhydrophobic surface could be realized by coating a self-assembled monolayers (SAM) of fluoroalkyltrichlorosilane on the nanopillar arrays. Sub-50 nm silicon nanowires (SiNWs) with high aspect ratio of about 1000 were achieved by using the nanopillars as etching mask through a metal-assisted chemical etching process. They showed an ultralow reflectance of approximately 0.1% for wavelengths ranging from 200 to 800 nm.

11.
Sci Rep ; 5: 15947, 2015 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-26515790

RESUMEN

Herein, we propose a new strategy of maskless lithographic approach to fabricate micro/nano-porous structures by phase separation of polystyrene (PS)/Polyethylene glycol (PEG) immiscible polymer blend. Its simple process only involves a spin coating of polymer blend followed by a development with deionized water rinse to remove PEG moiety, which provides an extremely facile, low-cost, easily accessible nanofabrication method to obtain the porous structures with wafer-scale. By controlling the weight ratio of PS/PEG polymer blend, its concentration and the spin-coating speed, the structural parameters of the porous nanostructure could be effectively tuned. These micro/nano porous structures could be converted into versatile functional nanostructures in combination with follow-up conventional chemical and physical nanofabrication techniques. As demonstrations of perceived potential applications using our developed phase separation lithography, we fabricate wafer-scale pure dielectric (silicon)-based two-dimensional nanostructures with high broadband absorption on silicon wafers due to their great light trapping ability, which could be expected for promising applications in the fields of photovoltaic devices and thermal emitters with very good performances, and Ag nanodot arrays which possess a surface enhanced Raman scattering (SERS) enhancement factor up to 1.64 × 10(8) with high uniformity across over an entire wafer.

12.
Nanoscale ; 6(22): 13945-51, 2014 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-25316324

RESUMEN

Ferroelectric polymers are among the most promising materials for flexible electronic devices. Highly ordered arrays of the defect-modified ferroelectric polymer P(VDF-TrFE-CFE) (poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene)) are fabricated by nanoimprint lithography for nonvolatile memory application. The defective CFE units reduce the coercive field to one-fifth of that of the un-modified P(VDF-TrFE), which can help minimize the energy consumption and extend the lifespan of the device. The nanoimprint process leads to preferable orientation of polymer chains and delicately controlled distribution of the defects, and thus a bi-stable polarization that makes the memory nonvolatile, as revealed by the pulsed polarization experiment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA