Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Plant Cell ; 28(2): 286-303, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26869700

RESUMEN

RNA Polymerase II (Pol II) regulatory cascades involving transcription factors (TFs) and their targets orchestrate the genetic circuitry of every eukaryotic organism. In order to understand how these cascades function, they can be dissected into small genetic networks, each containing just a few Pol II transcribed genes, that generate specific signal-processing outcomes. Small RNA regulatory circuits involve direct regulation of a small RNA by a TF and/or direct regulation of a TF by a small RNA and have been shown to play unique roles in many organisms. Here, we will focus on small RNA regulatory circuits containing Pol II transcribed microRNAs (miRNAs). While the role of miRNA-containing regulatory circuits as modular building blocks for the function of complex networks has long been on the forefront of studies in the animal kingdom, plant studies are poised to take a lead role in this area because of their advantages in probing transcriptional and posttranscriptional control of Pol II genes. The relative simplicity of tissue- and cell-type organization, miRNA targeting, and genomic structure make the Arabidopsis thaliana plant model uniquely amenable for small RNA regulatory circuit studies in a multicellular organism. In this Review, we cover analysis, tools, and validation methods for probing the component interactions in miRNA-containing regulatory circuits. We then review the important roles that plant miRNAs are playing in these circuits and summarize methods for the identification of small genetic circuits that strongly influence plant function. We conclude by noting areas of opportunity where new plant studies are imminently needed.


Asunto(s)
Arabidopsis/genética , Regulación de la Expresión Génica/genética , Redes Reguladoras de Genes , MicroARNs/genética , Plantas/genética , Biología Computacional , Proteínas de Plantas/genética , ARN Polimerasa II/genética , ARN Interferente Pequeño/genética , Factores de Transcripción/genética
2.
PLoS Pathog ; 10(1): e1003807, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24391493

RESUMEN

Pseudomonas syringae is a phylogenetically diverse species of Gram-negative bacterial plant pathogens responsible for crop diseases around the world. The HrpL sigma factor drives expression of the major P. syringae virulence regulon. HrpL controls expression of the genes encoding the structural and functional components of the type III secretion system (T3SS) and the type three secreted effector proteins (T3E) that are collectively essential for virulence. HrpL also regulates expression of an under-explored suite of non-type III effector genes (non-T3E), including toxin production systems and operons not previously associated with virulence. We implemented and refined genome-wide transcriptional analysis methods using cDNA-derived high-throughput sequencing (RNA-seq) data to characterize the HrpL regulon from six isolates of P. syringae spanning the diversity of the species. Our transcriptomes, mapped onto both complete and draft genomes, significantly extend earlier studies. We confirmed HrpL-regulation for a majority of previously defined T3E genes in these six strains. We identified two new T3E families from P. syringae pv. oryzae 1_6, a strain within the relatively underexplored phylogenetic Multi-Locus Sequence Typing (MLST) group IV. The HrpL regulons varied among strains in gene number and content across both their T3E and non-T3E gene suites. Strains within MLST group II consistently express the lowest number of HrpL-regulated genes. We identified events leading to recruitment into, and loss from, the HrpL regulon. These included gene gain and loss, and loss of HrpL regulation caused by group-specific cis element mutations in otherwise conserved genes. Novel non-T3E HrpL-regulated genes include an operon that we show is required for full virulence of P. syringae pv. phaseolicola 1448A on French bean. We highlight the power of integrating genomic, transcriptomic, and phylogenetic information to drive concise functional experimentation and to derive better insight into the evolution of virulence across an evolutionarily diverse pathogen species.


Asunto(s)
Proteínas Bacterianas/genética , Sistemas de Secreción Bacterianos/genética , Proteínas de Unión al ADN/genética , Evolución Molecular , Filogenia , Pseudomonas syringae/genética , Factor sigma/genética , Factores de Virulencia/genética , Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Operón/fisiología , Pseudomonas syringae/patogenicidad , Factor sigma/metabolismo , Factores de Virulencia/biosíntesis
3.
PLoS Genet ; 9(6): e1003496, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23818858

RESUMEN

The ascomycete fungus Tolypocladium inflatum, a pathogen of beetle larvae, is best known as the producer of the immunosuppressant drug cyclosporin. The draft genome of T. inflatum strain NRRL 8044 (ATCC 34921), the isolate from which cyclosporin was first isolated, is presented along with comparative analyses of the biosynthesis of cyclosporin and other secondary metabolites in T. inflatum and related taxa. Phylogenomic analyses reveal previously undetected and complex patterns of homology between the nonribosomal peptide synthetase (NRPS) that encodes for cyclosporin synthetase (simA) and those of other secondary metabolites with activities against insects (e.g., beauvericin, destruxins, etc.), and demonstrate the roles of module duplication and gene fusion in diversification of NRPSs. The secondary metabolite gene cluster responsible for cyclosporin biosynthesis is described. In addition to genes necessary for cyclosporin biosynthesis, it harbors a gene for a cyclophilin, which is a member of a family of immunophilins known to bind cyclosporin. Comparative analyses support a lineage specific origin of the cyclosporin gene cluster rather than horizontal gene transfer from bacteria or other fungi. RNA-Seq transcriptome analyses in a cyclosporin-inducing medium delineate the boundaries of the cyclosporin cluster and reveal high levels of expression of the gene cluster cyclophilin. In medium containing insect hemolymph, weaker but significant upregulation of several genes within the cyclosporin cluster, including the highly expressed cyclophilin gene, was observed. T. inflatum also represents the first reference draft genome of Ophiocordycipitaceae, a third family of insect pathogenic fungi within the fungal order Hypocreales, and supports parallel and qualitatively distinct radiations of insect pathogens. The T. inflatum genome provides additional insight into the evolution and biosynthesis of cyclosporin and lays a foundation for further investigations of the role of secondary metabolite gene clusters and their metabolites in fungal biology.


Asunto(s)
Escarabajos/microbiología , Ciclosporina/metabolismo , Hypocreales/genética , Complejos Multienzimáticos/genética , Péptido Sintasas/genética , Animales , Evolución Molecular , Transferencia de Gen Horizontal , Genoma , Hypocreales/enzimología , Complejos Multienzimáticos/metabolismo , Familia de Multigenes , Péptido Sintasas/metabolismo , Filogenia , Análisis de Secuencia de ARN
4.
Mol Plant Microbe Interact ; 28(3): 298-309, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25372122

RESUMEN

Pseudoperonospora cubensis is an obligate pathogen and causative agent of cucurbit downy mildew. To help advance our understanding of the pathogenicity of P. cubensis, we used RNA-Seq to improve the quality of its reference genome sequence. We also characterized the RNA-Seq dataset to inventory transcript isoforms and infer alternative splicing during different stages of its development. Almost half of the original gene annotations were improved and nearly 4,000 previously unannotated genes were identified. We also demonstrated that approximately 24% of the expressed genome and nearly 55% of the intron-containing genes from P. cubensis had evidence for alternative splicing. Our analyses revealed that intron retention is the predominant alternative splicing type in P. cubensis, with alternative 5'- and alternative 3'-splice sites occurring at lower frequencies. Representatives of the newly identified genes and predicted alternatively spliced transcripts were experimentally validated. The results presented herein highlight the utility of RNA-Seq for improving draft genome annotations and, through this approach, we demonstrate that alternative splicing occurs more frequently than previously predicted. In total, the current study provides evidence that alternative splicing plays a key role in transcriptome regulation and proteome diversification in plant-pathogenic oomycetes.


Asunto(s)
Empalme Alternativo , Cucumis sativus/microbiología , Oomicetos/genética , Enfermedades de las Plantas/microbiología , Transcriptoma , Secuencia de Bases , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Interacciones Huésped-Patógeno , Intrones/genética , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Oomicetos/fisiología , Isoformas de ARN , Análisis de Secuencia de ARN , Esporangios
5.
BMC Genomics ; 16: 597, 2015 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-26268438

RESUMEN

BACKGROUND: Identifying the transcription start sites (TSS) of genes is essential for characterizing promoter regions. Several protocols have been developed to capture the 5' end of transcripts via Cap Analysis of Gene Expression (CAGE) or linker-ligation strategies such as Paired-End Analysis of Transcription Start Sites (PEAT), but often require large amounts of tissue. More recently, nanoCAGE was developed for sequencing on the Illumina GAIIx to overcome these difficulties. RESULTS: Here we present the first publicly available adaptation of nanoCAGE for sequencing on recent ultra-high throughput platforms such as Illumina HiSeq-2000, and CapFilter, a computational pipeline that greatly increases confidence in TSS identification. We report excellent gene coverage, reproducibility, and precision in transcription start site discovery for samples from Arabidopsis thaliana roots. CONCLUSION: nanoCAGE-XL together with CapFilter allows for genome wide identification of high confidence transcription start sites in large eukaryotic genomes.


Asunto(s)
Arabidopsis/genética , Nanotecnología/métodos , Análisis de Secuencia de ADN/métodos , Sitio de Iniciación de la Transcripción , Genes de Plantas , Genoma de Planta , Nanotecnología/instrumentación , Raíces de Plantas/genética , Regiones Promotoras Genéticas , Análisis de Secuencia de ADN/instrumentación , Programas Informáticos
6.
RNA ; 15(5): 992-1002, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19307293

RESUMEN

The advent of high-throughput sequencing (HTS) methods has enabled direct approaches to quantitatively profile small RNA populations. However, these methods have been limited by several factors, including representational artifacts and lack of established statistical methods of analysis. Furthermore, massive HTS data sets present new problems related to data processing and mapping to a reference genome. Here, we show that cluster-based sequencing-by-synthesis technology is highly reproducible as a quantitative profiling tool for several classes of small RNA from Arabidopsis thaliana. We introduce the use of synthetic RNA oligoribonucleotide standards to facilitate objective normalization between HTS data sets, and adapt microarray-type methods for statistical analysis of multiple samples. These methods were tested successfully using mutants with small RNA biogenesis (miRNA-defective dcl1 mutant and siRNA-defective dcl2 dcl3 dcl4 triple mutant) or effector protein (ago1 mutant) deficiencies. Computational methods were also developed to rapidly and accurately parse, quantify, and map small RNA data.


Asunto(s)
Arabidopsis/genética , Perfilación de la Expresión Génica , ARN de Planta/genética , Biología Computacional , Análisis de Secuencia de ARN
7.
PLoS Biol ; 5(3): e57, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17298187

RESUMEN

Eukaryotes contain a diversified set of small RNA-guided pathways that control genes, repeated sequences, and viruses at the transcriptional and posttranscriptional levels. Genome-wide profiles and analyses of small RNAs, particularly the large class of 24-nucleotide (nt) short interfering RNAs (siRNAs), were done for wild-type Arabidopsis thaliana and silencing pathway mutants with defects in three RNA-dependent RNA polymerase (RDR) and four Dicer-like (DCL) genes. The profiling involved direct analysis using a multiplexed, parallel-sequencing strategy. Small RNA-generating loci, especially those producing predominantly 24-nt siRNAs, were found to be highly correlated with repetitive elements across the genome. These were found to be largely RDR2- and DCL3-dependent, although alternative DCL activities were detected on a widespread level in the absence of DCL3. In contrast, no evidence for RDR2-alternative activities was detected. Analysis of RDR2- and DCL3-dependent small RNA accumulation patterns in and around protein-coding genes revealed that upstream gene regulatory sequences systematically lack siRNA-generating activities. Further, expression profiling suggested that relatively few genes, proximal to abundant 24-nt siRNAs, are regulated directly by RDR2- and DCL3-dependent silencing. We conclude that the widespread accumulation patterns for RDR2- and DCL3-dependent siRNAs throughout the Arabidopsis genome largely reflect mechanisms to silence highly repeated sequences.


Asunto(s)
Arabidopsis/genética , Perfilación de la Expresión Génica , Genoma de Planta , ARN Interferente Pequeño , Secuencia de Bases , Cartilla de ADN
8.
Nucleic Acids Res ; 36(Database issue): D982-5, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17999994

RESUMEN

Development of the Arabidopsis Small RNA Project (ASRP) Database, which provides information and tools for the analysis of microRNA, endogenous siRNA and other small RNA-related features, has been driven by the introduction of high-throughput sequencing technology. To accommodate the demands of increased data, numerous improvements and updates have been made to ASRP, including new ways to access data, more efficient algorithms for handling data, and increased integration with community-wide resources. New search and visualization tools have also been developed to improve access to small RNA classes and their targets. ASRP is publicly available through a web interface at http://asrp.cgrb.oregonstate.edu/db/.


Asunto(s)
Arabidopsis/genética , Bases de Datos de Ácidos Nucleicos , MicroARNs/química , ARN de Planta/química , ARN Interferente Pequeño/química , Internet , ARN no Traducido/química , Interfaz Usuario-Computador
9.
Plant Methods ; 11: 42, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26339280

RESUMEN

BACKGROUND: Identifying cis-regulatory elements is critical in understanding the direct and indirect regulatory mechanisms of gene expression. Current approaches include DNase-seq, a technique that combines sensitivity to the nonspecific endonuclease DNase I with high throughput sequencing to identify regions of regulatory DNA on a genome-wide scale. While this method was originally developed for human cell lines, later adaptations made the processing of plant tissues possible. Challenges still remain in processing recalcitrant tissues that have low DNA content. RESULTS: By removing steps requiring the use of gel agarose plugs in DNase-seq, we were able to significantly reduce the time required to perform the protocol by at least 2 days, while also making possible the processing of difficult plant tissues. We refer to this simplified protocol as DNase I SIM (for simplified in-nucleus method). We were able to successfully create DNase-seq libraries for both leaf and root tissues in Arabidopsis using DNase I SIM. CONCLUSION: This protocol simplifies and facilitates generation of DNase-seq libraries from plant tissues for high resolution mapping of DNase I hypersensitive sites.

10.
Mol Plant ; 8(2): 207-27, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25680774

RESUMEN

Environmental stresses profoundly altered accumulation of nonsense mRNAs including intron-retaining (IR) transcripts in Arabidopsis. Temporal patterns of stress-induced IR mRNAs were dissected using both oscillating and non-oscillating transcripts. Broad-range thermal cycles triggered a sharp increase in the long IR CCA1 isoforms and altered their phasing to different times of day. Both abiotic and biotic stresses such as drought or Pseudomonas syringae infection induced a similar increase. Thermal stress induced a time delay in accumulation of CCA1 I4Rb transcripts, whereas functional mRNA showed steady oscillations. Our data favor a hypothesis that stress-induced instabilities of the central oscillator can be in part compensated through fluctuations in abundance and out-of-phase oscillations of CCA1 IR transcripts. Taken together, our results support a concept that mRNA abundance can be modulated through altering ratios between functional and nonsense/IR transcripts. SR45 protein specifically bound to the retained CCA1 intron in vitro, suggesting that this splicing factor could be involved in regulation of intron retention. Transcriptomes of nonsense-mediated mRNA decay (NMD)-impaired and heat-stressed plants shared a set of retained introns associated with stress- and defense-inducible transcripts. Constitutive activation of certain stress response networks in an NMD mutant could be linked to disequilibrium between functional and nonsense mRNAs.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Empalme Alternativo/genética , Empalme Alternativo/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Relojes Circadianos/genética , Relojes Circadianos/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Intrones/genética , Degradación de ARNm Mediada por Codón sin Sentido/genética , Degradación de ARNm Mediada por Codón sin Sentido/fisiología
11.
Mol Plant ; 2014 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-25366180

RESUMEN

Environmental stresses profoundly altered accumulation of nonsense mRNAs including intron retaining (IR) transcripts in Arabidopsis. Temporal patterns of stress-induced IR mRNAs were dissected using both oscillating and non-oscillating transcripts. Broad range thermal cycles triggered a sharp increase in the long intron retaining CCA1 isoforms and altered their phasing to different times of day. Both abiotic and biotic stresses such as drought or P. syringae infection induced similar increase. Thermal stress induced a time delay in accumulation of CCA1 I4Rb transcripts whereas functional mRNA showed steady oscillations. Our data favor a hypothesis that stress-induced instabilities of the central oscillator can be in part compensated through fluctuations in abundance and out of phase oscillations of CCA1 IR transcripts. Altogether, our results support a concept that mRNA abundance can be modulated through altering ratios between functional and nonsense/IR transcripts. SR45 protein specifically bound to the retained CCA1 intron in vitro, suggesting that this splicing factor could be involved in regulation of intron retention. Transcriptomes of NMD-impaired and heat-stressed plants shared a set of retained introns associated with stress- and defense-inducible transcripts. Constitutive activation of certain stress response networks in an NMD mutant could be linked to disequilibrium between functional and nonsense mRNAs.

12.
PLoS One ; 7(10): e46128, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23056249

RESUMEN

When assessing differential gene expression from RNA sequencing data, commonly used statistical tests tend to have greater power to detect differential expression of genes encoding longer transcripts. This phenomenon, called "length bias", will influence subsequent analyses such as Gene Ontology enrichment analysis. In the presence of length bias, Gene Ontology categories that include longer genes are more likely to be identified as enriched. These categories, however, are not necessarily biologically more relevant. We show that one can effectively adjust for length bias in Gene Ontology analysis by including transcript length as a covariate in a logistic regression model. The logistic regression model makes the statistical issue underlying length bias more transparent: transcript length becomes a confounding factor when it correlates with both the Gene Ontology membership and the significance of the differential expression test. The inclusion of the transcript length as a covariate allows one to investigate the direct correlation between the Gene Ontology membership and the significance of testing differential expression, conditional on the transcript length. We present both real and simulated data examples to show that the logistic regression approach is simple, effective, and flexible.


Asunto(s)
Sesgo , Perfilación de la Expresión Génica/estadística & datos numéricos , Modelos Logísticos , Vocabulario Controlado , Algoritmos , Arabidopsis/genética , Simulación por Computador , Humanos , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos/estadística & datos numéricos , Neoplasias de la Próstata/genética , ARN/genética , Transcripción Genética
13.
Genes (Basel) ; 2(4): 689-705, 2011 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-24710287

RESUMEN

The throughput and single-base resolution of RNA-Sequencing (RNA-Seq) have contributed to a dramatic change in transcriptomic-based inquiries and resulted in many new insights into the complexities of bacterial transcriptomes. RNA-Seq could contribute to similar advances in our understanding of plant pathogenic bacteria but it is still a technology under development with limitations and unknowns that need to be considered. Here, we review some new developments for RNA-Seq and highlight recent findings for host-associated bacteria. We also discuss the technical and statistical challenges in the practical application of RNA-Seq for studying bacterial transcriptomes and describe some of the currently available solutions.

14.
PLoS One ; 6(10): e25279, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21998647

RESUMEN

GENE-counter is a complete Perl-based computational pipeline for analyzing RNA-Sequencing (RNA-Seq) data for differential gene expression. In addition to its use in studying transcriptomes of eukaryotic model organisms, GENE-counter is applicable for prokaryotes and non-model organisms without an available genome reference sequence. For alignments, GENE-counter is configured for CASHX, Bowtie, and BWA, but an end user can use any Sequence Alignment/Map (SAM)-compliant program of preference. To analyze data for differential gene expression, GENE-counter can be run with any one of three statistics packages that are based on variations of the negative binomial distribution. The default method is a new and simple statistical test we developed based on an over-parameterized version of the negative binomial distribution. GENE-counter also includes three different methods for assessing differentially expressed features for enriched gene ontology (GO) terms. Results are transparent and data are systematically stored in a MySQL relational database to facilitate additional analyses as well as quality assessment. We used next generation sequencing to generate a small-scale RNA-Seq dataset derived from the heavily studied defense response of Arabidopsis thaliana and used GENE-counter to process the data. Collectively, the support from analysis of microarrays as well as the observed and substantial overlap in results from each of the three statistics packages demonstrates that GENE-counter is well suited for handling the unique characteristics of small sample sizes and high variability in gene counts.


Asunto(s)
Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Análisis de Secuencia de ARN , Arabidopsis/genética , Arabidopsis/inmunología , Benchmarking , Secuencia Conservada , Interpretación Estadística de Datos , Bases de Datos Genéticas , Genómica , Análisis de Secuencia por Matrices de Oligonucleótidos
15.
Plant Physiol ; 144(3): 1247-55, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17496106

RESUMEN

It has been shown that overlapping cis-natural antisense transcripts (cis-NATs) can form a regulatory circuit in which small RNAs derived from one transcript regulate stability of the other transcript, which manifests itself as anticorrelated expression. However, little is known about how widespread antagonistic expression of cis-NATs is. We have determined how frequently cis-NAT pairs, which make up 7.4% of annotated transcription units in the Arabidopsis (Arabidopsis thaliana) genome, show anticorrelated expression patterns. Indeed, global expression profiles of pairs of cis-NATs on average have significantly lower pairwise Pearson correlation coefficients than other pairs of neighboring genes whose transcripts do not overlap. However, anticorrelated expression that is greater than expected by chance is found in only a small number of cis-NAT pairs. The degree of anticorrelation does not depend on the length of the overlap or on the distance of the 5' ends of the transcripts. Consistent with earlier findings, cis-NATs do not exhibit an increased likelihood to give rise to small RNAs, as determined from available small RNA sequences and massively parallel signature sequencing tags. However, the overlapping regions of cis-NATs appeared to be enriched for small RNA loci compared to nonoverlapping regions. Furthermore, expression of cis-NATs was not disproportionately affected in various RNA-silencing mutants. Our results demonstrate that there is a trend toward anticorrelated expression of cis-NAT pairs in Arabidopsis, but currently available data do not produce a strong signature of small RNA-mediated silencing for this process.


Asunto(s)
Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , ARN sin Sentido/metabolismo , Arabidopsis/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Regiones Promotoras Genéticas , Interferencia de ARN
16.
Plant Cell ; 19(3): 926-42, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17400893

RESUMEN

Posttranscriptional RNA silencing of many endogenous transcripts, viruses, and transgenes involves the RNA-DEPENDENT RNA POLYMERASE6/DICER-LIKE4 (RDR6/DCL4)-dependent short interfering RNA (siRNA) biogenesis pathway. Arabidopsis thaliana contains several families of trans-acting siRNAs (tasiRNAs) that form in 21-nucleotide phased arrays through the RDR6/DCL4-dependent pathway and that negatively regulate target transcripts. Using deep sequencing technology and computational approaches, the phasing patterns of known tasiRNAs and tasiRNA-like loci from across the Arabidopsis genome were analyzed in wild-type plants and silencing-defective mutants. Several gene transcripts were found to be routed through the RDR6/DCL4-dependent pathway after initial targeting by one or multiple miRNAs or tasiRNAs, the most conspicuous example of which was an expanding clade of genes encoding pentatricopeptide repeat (PPR) proteins. Interestingly, phylogenetic analysis using Populus trichocarpa revealed evidence for small RNA-mediated regulatory mechanisms within a similarly expanded group of PPR genes. We suggest that posttranscriptional silencing mechanisms operate on an evolutionary scale to buffer the effects of rapidly expanding gene families.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Genoma de Planta/genética , MicroARNs/metabolismo , ARN Interferente Pequeño/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , Ribonucleasas/metabolismo , Secuencia de Bases , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , MicroARNs/genética , Datos de Secuencia Molecular , Nucleótidos , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , Ribonucleasa III
17.
PLoS One ; 2(2): e219, 2007 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-17299599

RESUMEN

In plants, microRNAs (miRNAs) comprise one of two classes of small RNAs that function primarily as negative regulators at the posttranscriptional level. Several MIRNA genes in the plant kingdom are ancient, with conservation extending between angiosperms and the mosses, whereas many others are more recently evolved. Here, we use deep sequencing and computational methods to identify, profile and analyze non-conserved MIRNA genes in Arabidopsis thaliana. 48 non-conserved MIRNA families, nearly all of which were represented by single genes, were identified. Sequence similarity analyses of miRNA precursor foldback arms revealed evidence for recent evolutionary origin of 16 MIRNA loci through inverted duplication events from protein-coding gene sequences. Interestingly, these recently evolved MIRNA genes have taken distinct paths. Whereas some non-conserved miRNAs interact with and regulate target transcripts from gene families that donated parental sequences, others have drifted to the point of non-interaction with parental gene family transcripts. Some young MIRNA loci clearly originated from one gene family but form miRNAs that target transcripts in another family. We suggest that MIRNA genes are undergoing relatively frequent birth and death, with only a subset being stabilized by integration into regulatory networks.


Asunto(s)
Arabidopsis/genética , Genes de Plantas , Ensayos Analíticos de Alto Rendimiento , MicroARNs/genética , ARN de Planta/genética , Secuencia de Bases , Secuencia Conservada , MicroARNs/análisis , Datos de Secuencia Molecular , ARN de Planta/análisis , Alineación de Secuencia , Análisis de Secuencia de ARN , Homología de Secuencia de Ácido Nucleico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA