Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(28): e2318691121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38968121

RESUMEN

Dietary lipids play an essential role in regulating the function of the gut microbiota and gastrointestinal tract, and these luminal interactions contribute to mediating host metabolism. Palmitic Acid Hydroxy Stearic Acids (PAHSAs) are a family of lipids with antidiabetic and anti-inflammatory properties, but whether the gut microbiota contributes to their beneficial effects on host metabolism is unknown. Here, we report that treating chow-fed female and male germ-free (GF) mice with PAHSAs improves glucose tolerance, but these effects are lost upon high fat diet (HFD) feeding. However, transfer of feces from PAHSA-treated, but not vehicle-treated, chow-fed conventional mice increases insulin sensitivity in HFD-fed GF mice. Thus, the gut microbiota is necessary for, and can transmit, the insulin-sensitizing effects of PAHSAs in HFD-fed GF male mice. Analyses of the cecal metagenome and lipidome of PAHSA-treated mice identified multiple lipid species that associate with the gut commensal Bacteroides thetaiotaomicron (Bt) and with insulin sensitivity resulting from PAHSA treatment. Supplementing live, and to some degree, heat-killed Bt to HFD-fed female mice prevented weight gain, reduced adiposity, improved glucose tolerance, fortified the colonic mucus barrier and reduced systemic inflammation compared to HFD-fed controls. These effects were not observed in HFD-fed male mice. Furthermore, ovariectomy partially reversed the beneficial Bt effects on host metabolism, indicating a role for sex hormones in mediating the Bt probiotic effects. Altogether, these studies highlight the fact that PAHSAs can modulate the gut microbiota and that the microbiota is necessary for the beneficial metabolic effects of PAHSAs in HFD-fed mice.


Asunto(s)
Dieta Alta en Grasa , Microbioma Gastrointestinal , Resistencia a la Insulina , Obesidad , Animales , Masculino , Femenino , Ratones , Microbioma Gastrointestinal/efectos de los fármacos , Obesidad/metabolismo , Obesidad/microbiología , Obesidad/etiología , Dieta Alta en Grasa/efectos adversos , Ratones Endogámicos C57BL , Ácidos Esteáricos/metabolismo , Ácido Palmítico/metabolismo , Heces/microbiología , Ratones Obesos
2.
FASEB J ; 34(1): 1846-1858, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31914635

RESUMEN

P53 has been implicated in the pathogenesis of obesity and diabetes; however, the mechanisms and tissue sites of action are incompletely defined. Therefore, we investigated the role of hepatocyte p53 in metabolic homeostasis using a hepatocyte-specific p53 knockout mouse model. To gain further mechanistic insight, we studied mice under two complementary conditions of restricted weight gain: vertical sleeve gastrectomy (VSG) or food restriction. VSG or sham surgery was performed in high-fat diet-fed male hepatocyte-specific p53 wild-type and knockout littermates. Sham-operated mice were fed ad libitum or food restricted to match their body weight to VSG-operated mice. Hepatocyte-specific p53 ablation in sham-operated ad libitum-fed mice impaired glucose homeostasis, increased body weight, and decreased energy expenditure without changing food intake. The metabolic deficits induced by hepatocyte-specific p53 ablation were corrected, in part by food restriction, and completely by VSG. Unlike food restriction, VSG corrected the effect of hepatocyte p53 ablation to lower energy expenditure, resulting in a greater improvement in glucose homeostasis compared with food restricted mice. These data reveal an important new role for hepatocyte p53 in the regulation of energy expenditure and body weight and suggest that VSG can improve alterations in energetics associated with p53 dysregulation.


Asunto(s)
Hepatocitos/metabolismo , Enfermedades Metabólicas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Glucemia/metabolismo , Peso Corporal/fisiología , Restricción Calórica/métodos , Dieta Alta en Grasa/efectos adversos , Ingestión de Alimentos/fisiología , Metabolismo Energético/fisiología , Alimentos , Gastrectomía/métodos , Homeostasis/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/metabolismo , Aumento de Peso/fisiología , Pérdida de Peso
3.
J Biol Chem ; 294(43): 15623-15637, 2019 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-31434739

RESUMEN

Defects in the Fanconi anemia (FA) DNA damage-response pathway result in genomic instability, developmental defects, hematopoietic failure, cancer predisposition, and metabolic disorders. The endogenous sources of damage contributing to FA phenotypes and the links between FA and metabolic disease remain poorly understood. Here, using mice lacking the Fancd2 gene, encoding a central FA pathway component, we investigated whether the FA pathway protects against metabolic challenges. Fancd2-/- and wildtype (WT) mice were fed a standard diet (SD), a diet enriched in fat, cholesterol, and cholic acid (Paigen diet), or a diet enriched in lipid alone (high-fat diet (HFD)). Fancd2-/- mice developed hepatobiliary disease and exhibited decreased survival when fed a Paigen diet but not a HFD. Male Paigen diet-fed mice lacking Fancd2 had significant biliary hyperplasia, increased serum bile acid concentration, and increased hepatic pathology. In contrast, female mice were similarly impacted by Paigen diet feeding regardless of Fancd2 status. Upon Paigen diet challenge, male Fancd2-/- mice had altered expression of genes encoding hepatic bile acid transporters and cholesterol and fatty acid metabolism proteins, including Scp2/x, Abcg5/8, Abca1, Ldlr, Srebf1, and Scd-1 Untargeted lipidomic profiling in liver tissue revealed 132 lipid species, including sphingolipids, glycerophospholipids, and glycerolipids, that differed significantly in abundance depending on Fancd2 status in male mice. We conclude that the FA pathway has sex-specific impacts on hepatic lipid and bile acid metabolism, findings that expand the known functions of the FA pathway and may provide mechanistic insight into the metabolic disease predisposition in individuals with FA.


Asunto(s)
Bilis/metabolismo , Dieta , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/deficiencia , Metabolismo de los Lípidos , Hígado/metabolismo , Caracteres Sexuales , Animales , Colesterol/metabolismo , Daño del ADN , Enfermedades del Sistema Digestivo/metabolismo , Susceptibilidad a Enfermedades , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Conducta Alimentaria , Femenino , Regulación de la Expresión Génica , Cinética , Metabolismo de los Lípidos/genética , Masculino , Ratones
5.
Curr Diab Rep ; 18(11): 109, 2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-30232649

RESUMEN

PURPOSE OF REVIEW: Herein, we review the role of FXR and TGR5 in the regulation of hepatic bile acid metabolism, with a focus on how our understanding of bile acid metabolic regulation by these receptors has evolved in recent years and how this improved understanding may facilitate targeting bile acids for type 2 diabetes treatment. RECENT FINDINGS: Bile acid profile is a key regulator of metabolic homeostasis. Inhibition of expression of the enzyme that is required for cholic acid synthesis and thus determines bile acid profile, Cyp8b1, may be an effective target for type 2 diabetes treatment. FXR and, more recently, TGR5 have been shown to regulate bile acid metabolism and Cyp8b1 expression and, therefore, may provide a mechanism with which to target bile acid profile for type 2 diabetes treatment. Inhibition of Cyp8b1 expression is a promising therapeutic modality for type 2 diabetes; however, further work is needed to fully understand the pathways regulating Cyp8b1 expression.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/terapia , Transducción de Señal , Animales , Glucemia/metabolismo , Homeostasis , Humanos , Hígado/metabolismo
6.
Gut ; 66(2): 226-234, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-26511794

RESUMEN

OBJECTIVE: Vertical sleeve gastrectomy (VSG) produces high rates of type 2 diabetes remission; however, the mechanisms responsible remain incompletely defined. VSG increases circulating bile acid concentrations and bile acid signalling through TGR5 improves glucose homeostasis. Therefore, we investigated the role of TGR5 signalling in mediating the glucoregulatory benefits of VSG. DESIGN: VSG or sham surgery was performed in high-fat-fed male Tgr5+/+ (wild type) and Tgr5-/- (knockout) littermates. Sham-operated mice were fed ad libitum or food restricted to match their body weight to VSG-operated mice. Body weight, food intake, energy expenditure, insulin signalling and circulating bile acid profiles were measured and oral glucose tolerance testing, islet immunohistochemistry and gut microbial profiling were performed. RESULTS: VSG decreased food intake and body weight, increased energy expenditure and circulating bile acid concentrations, improved fasting glycaemia, glucose tolerance and glucose-stimulated insulin secretion, enhanced nutrient-stimulated glucagon-like peptide 1 secretion and produced favourable shifts in gut microbial populations in both genotypes. However, the body weight-independent improvements in fasting glycaemia, glucose tolerance, hepatic insulin signalling, hepatic inflammation and islet morphology after VSG were attenuated in Tgr5-/- relative to Tgr5+/+ mice. Furthermore, VSG produced metabolically favourable alterations in circulating bile acid profiles that were blunted in Tgr5-/- relative to Tgr5+/+ mice. TGR5-dependent regulation of hepatic Cyp8b1 expression may have contributed to TGR5-mediated shifts in the circulating bile acid pool after VSG. CONCLUSIONS: These results suggest that TGR5 contributes to the glucoregulatory benefits of VSG surgery by promoting metabolically favourable shifts in the circulating bile acid pool.


Asunto(s)
Ácidos y Sales Biliares/sangre , Glucemia/metabolismo , Gastrectomía , Insulina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Peso Corporal , Ingestión de Alimentos , Metabolismo Energético , Ayuno , Gastrectomía/métodos , Microbioma Gastrointestinal , Péptido 1 Similar al Glucagón/metabolismo , Prueba de Tolerancia a la Glucosa , Secreción de Insulina , Islotes Pancreáticos/química , Islotes Pancreáticos/patología , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores Acoplados a Proteínas G/genética , Transducción de Señal , Esteroide 12-alfa-Hidroxilasa/metabolismo
7.
Biochim Biophys Acta ; 1842(9): 1313-23, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24840661

RESUMEN

The rising prevalence of type-2 diabetes is becoming a pressing issue based on emerging reports that T2DM can also adversely impact mental health. We have utilized the UCD-T2DM rat model in which the onset of T2DM develops spontaneously across time and can serve to understand the pathophysiology of diabetes in humans. An increased insulin resistance index and plasma glucose levels manifested the onset of T2DM. There was a decrease in hippocampal insulin receptor signaling in the hippocampus, which correlated with peripheral insulin resistance index along the course of diabetes onset (r=-0.56, p<0.01). T2DM increased the hippocampal levels of 4-hydroxynonenal (4-HNE; a marker of lipid peroxidation) in inverse proportion to the changes in the mitochondrial regulator PGC-1α. Disrupted energy homeostasis was further manifested by a concurrent reduction in energy metabolic markers, including TFAM, SIRT1, and AMPK phosphorylation. In addition, T2DM influenced brain plasticity as evidenced by a significant reduction of BDNF-TrkB signaling. These results suggest that the pathology of T2DM in the brain involves a progressive and coordinated disruption of insulin signaling, and energy homeostasis, with profound consequences for brain function and plasticity. All the described consequences of T2DM were attenuated by treatment with the glucagon-like peptide-1 receptor agonist, liraglutide. Similar results to those of liraglutide were obtained by exposing T2DM rats to a food energy restricted diet, which suggest that normalization of brain energy metabolism is a crucial factor to counteract central insulin sensitivity and synaptic plasticity associated with T2DM.


Asunto(s)
Encéfalo/patología , Diabetes Mellitus Tipo 2/patología , Modelos Animales de Enfermedad , Metabolismo Energético , Homeostasis/fisiología , Resistencia a la Insulina , Plasticidad Neuronal/fisiología , Aldehídos/metabolismo , Animales , Biomarcadores/metabolismo , Glucemia/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Cruzamientos Genéticos , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/metabolismo , Péptido 1 Similar al Glucagón/análogos & derivados , Péptido 1 Similar al Glucagón/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Hipoglucemiantes/farmacología , Immunoblotting , Liraglutida , Masculino , Plasticidad Neuronal/efectos de los fármacos , Obesidad/complicaciones , Ratas , Ratas Sprague-Dawley , Ratas Zucker , Receptor de Insulina/metabolismo
8.
Can Vet J ; 56(12): 1252-6, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26663920

RESUMEN

In human athletes significant changes in cytokine concentrations secondary to exercise have been observed. This prospective study evaluated the effect of a multi-day stage sled dog race on plasma concentrations of monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-alpha (TNF-α), interleukin-2 (IL-2), interleukin-6 (IL-6), interleukin-8 (IL-8), and interleukin-10 (IL-10). Samples from 20 dogs were harvested prior to and on days 2 and 8 of an 8-day race. Exercise resulted in significantly decreased TNF-α and IL-8 as well as increases of MCP-1, IL-6, and IL-10 concentrations (P-value between 0.01 and < 0.0001 for all parameters). The proportion of values for IL-2 that were below the detection limit increased from 40% on day 0 to 75% on day 2 and decreased on day 8 to 40% (P = 0.04). Racing sled dogs show cytokine-concentration changes that are different from those in humans.


Évaluation des concentrations plasmatiques de cytokines inflammatoires chez des chiens de traîneau de course. Chez les athlètes humains, des changements importants des concentrations de cytokines secondaires à l'exercice ont été observés. Cette étude prospective a évalué l'effet d'une course de chiens de traîneau par étapes de plusieurs jours sur les concentrations plasmatiques des protéines-1 chimio-attractives des monocytes (MCP-1), du facteur-alpha nécrosant des tumeurs (TNF-α), d'interleukine-2 (IL-2), d'interleukine-6 (IL-6), d'interleukine-8 (IL-8) et d'interleukine-10 (IL-10). Des échantillons ont été prélevés sur 20 chiens avant la course et aux jours 2 et 8 d'une course de 8 jours. L'exercice a produit des valeurs significativement réduites de TNF-α et d'IL-8 ainsi qu'une hausse des concentrations de MCP-1, d'IL-6 et d'IL-10 (la valeur-P entre 0,01 et < 0,0001 pour tous les paramètres). La proportion des valeurs pour IL-2 qui étaient inférieures au seuil de détection a augmenté de 40 % le jour 0 à 75 % le jour 2 et a baissé le jour 8 à 40 % (P = 0,04). Les chiens de traîneau de course montrent des changements de la concentration des cytokines qui sont différents de ceux observés chez les humains.(Traduit par Isabelle Vallières).


Asunto(s)
Citocinas/sangre , Perros/inmunología , Deportes , Animales , Citocinas/metabolismo , Perros/sangre , Femenino , Regulación de la Expresión Génica/fisiología , Masculino
9.
J Nutr ; 144(1): 5-11, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24108131

RESUMEN

Fish oil (FO) is a commonly used supplemental source of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), 2 n-3 (ω-3) polyunsaturated fatty acids (PUFAs) that have been shown to have a variety of health benefits considered to be protective against cardiometabolic diseases. Although the effects of EPA and DHA on lipid metabolism have been extensively studied, not all of the metabolic effects of FO-derived n-3 PUFAs have been characterized. Our laboratory recently showed that a high-fructose diet in rhesus monkeys induces the features of metabolic syndrome (MetS) similar to those observed in humans. Thus, we specifically wanted to evaluate the effects of FO in rhesus monkeys fed a high-fructose diet and hypothesized that FO supplementation would mitigate the development of fructose-induced insulin resistance, dyslipidemia, and other cardiometabolic risk factors. In this study, adult monkeys (aged 12-20 y) received either a standard unpurified diet plus 75 g fructose/d (control group; n = 9) or a standard unpurified diet, 75 g fructose/d, and 4 g FO (16% EPA + 11% DHA)/d (treatment group; n = 10) for 6 mo. Importantly, our results showed that daily FO supplementation in the monkeys prevented fructose-induced hypertriglyceridemia and insulin resistance as assessed by intravenous-glucose-tolerance testing (P ≤ 0.05). Moreover, FO administration in the monkeys prevented fructose-induced increases in plasma apolipoprotein (Apo)C3, ApoE, and leptin concentrations and attenuated decreases in circulating adropin concentrations (P ≤ 0.05). No differences between the control and FO-treated monkeys were observed in body weight, lean mass, fat mass, or fasting glucose, insulin, and adiponectin concentrations. In conclusion, FO administration in a nonhuman primate model of diet-induced MetS ameliorates many of the adverse changes in lipid and glucose metabolism induced by chronic fructose consumption.


Asunto(s)
Suplementos Dietéticos , Aceites de Pescado/administración & dosificación , Fructosa/efectos adversos , Hipertrigliceridemia/patología , Resistencia a la Insulina , Macaca mulatta/metabolismo , Adiponectina/sangre , Animales , Glucemia/metabolismo , Modelos Animales de Enfermedad , Ácidos Docosahexaenoicos/administración & dosificación , Dislipidemias/sangre , Ácido Eicosapentaenoico/administración & dosificación , Prueba de Tolerancia a la Glucosa , Hipertrigliceridemia/sangre , Hipertrigliceridemia/inducido químicamente , Insulina/sangre , Metabolismo de los Lípidos , Masculino , Síndrome Metabólico/sangre , Síndrome Metabólico/inducido químicamente , Síndrome Metabólico/patología
10.
Proc Natl Acad Sci U S A ; 108(35): 14670-5, 2011 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-21873226

RESUMEN

Leptin has been shown to reduce hyperglycemia in rodent models of type 1 diabetes. We investigated the effects of leptin administration in University of California, Davis, type 2 diabetes mellitus (UCD-T2DM) rats, which develop adult-onset polygenic obesity and type 2 diabetes. Animals that had been diabetic for 2 mo were treated with s.c. injections of saline (control) or murine leptin (0.5 mg/kg) twice daily for 1 mo. Control rats were pair-fed to leptin-treated animals. Treatment with leptin normalized fasting plasma glucose and was accompanied by lowered HbA1c, plasma glucagon, and triglyceride concentrations and expression of hepatic gluconeogenic enzymes compared with vehicle (P < 0.05), independent of any effects on body weight and food intake. In addition, leptin-treated animals exhibited marked improvement of insulin sensitivity and glucose homeostasis compared with controls, whereas pancreatic insulin content was 50% higher in leptin-treated animals (P < 0.05). These effects coincided with activation of leptin and insulin signaling pathways and down-regulation of the PKR-like endoplasmic reticulum (ER) kinase/eukaryotic translation inhibition factor 2α (PERK-eIF2α) arm of ER stress in liver, skeletal muscle, and adipose tissue as well as increased pro-opiomelanocortin and decreased agouti-related peptide in the hypothalamus. In contrast, several markers of inflammation/immune function were elevated with leptin treatment in the same tissues (P < 0.05), suggesting that the leptin-mediated increase of insulin sensitivity was not attributable to decreased inflammation. Thus, leptin administration improves insulin sensitivity and normalizes fasting plasma glucose in diabetic UCD-T2DM rats, independent of energy intake, via peripheral and possibly centrally mediated actions, in part by decreasing circulating glucagon and ER stress.


Asunto(s)
Glucemia/análisis , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Leptina/administración & dosificación , Animales , Peso Corporal , Corticosterona/sangre , Diabetes Mellitus Tipo 2/sangre , Ingestión de Alimentos , Retículo Endoplásmico/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Glucagón/sangre , Gluconeogénesis , Hemoglobina Glucada/análisis , Inyecciones Subcutáneas , Insulina/sangre , Factor I del Crecimiento Similar a la Insulina/análisis , Janus Quinasa 2/metabolismo , Metabolismo de los Lípidos , Masculino , Ratas , Transducción de Señal , eIF-2 Quinasa/metabolismo
11.
Obes Surg ; 34(7): 2483-2491, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38777944

RESUMEN

BACKGROUND: Bariatric surgery alters bile acid metabolism, which contributes to post-operative improvements in metabolic health. However, the mechanisms by which bariatric surgery alters bile acid metabolism are incompletely defined. In particular, the role of the gut microbiome in the effects of bariatric surgery on bile acid metabolism is incompletely understood. Therefore, we sought to define the changes in gut luminal bile acid composition after vertical sleeve gastrectomy (VSG). METHODS: Bile acid profile was determined by UPLC-MS/MS in serum and gut luminal samples from VSG and sham-operated mice. Sham-operated mice were divided into two groups: one was fed ad libitum, while the other was food-restricted to match their body weight to the VSG-operated mice. RESULTS: VSG decreased gut luminal secondary bile acids, which was driven by a decrease in gut luminal deoxycholic acid concentrations and abundance. However, gut luminal cholic acid (precursor for deoxycholic acid) concentration and abundance did not differ between groups. Therefore, the observed decrease in gut luminal deoxycholic acid abundance after VSG was not due to a reduction in substrate availability. CONCLUSION: VSG decreased gut luminal deoxycholic acid abundance independently of body weight, which may be driven by a decrease in gut bacterial bile acid metabolism.


Asunto(s)
Ácido Desoxicólico , Gastrectomía , Microbioma Gastrointestinal , Animales , Ratones , Microbioma Gastrointestinal/fisiología , Gastrectomía/métodos , Masculino , Ácidos y Sales Biliares/metabolismo , Ratones Endogámicos C57BL , Cirugía Bariátrica
12.
PLoS One ; 19(5): e0303110, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38691553

RESUMEN

[This corrects the article DOI: 10.1371/journal.pone.0200908.].

13.
J Endocrinol ; 262(2)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38814331

RESUMEN

Glucagon plays a central role in amino acid (AA) homeostasis. The dog is an established model of glucagon biology, and recently, metabolomic changes in people associated with glucagon infusions have been reported. Glucagon also has effects on the kidney; however, changes in urinary AA concentrations associated with glucagon remain under investigation. Therefore, we aimed to fill these gaps in the canine model by determining the effects of glucagon on the canine plasma metabolome and measuring urine AA concentrations. Employing two constant rate glucagon infusions (CRI) - low-dose (CRI-LO: 3 ng/kg/min) and high-dose (CRI-HI: 50 ng/kg/min) on five research beagles, we monitored interstitial glucose and conducted untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) on plasma samples and urine AA concentrations collected pre- and post-infusion. The CRI-HI induced a transient glucose peak (90-120 min), returning near baseline by infusion end, while only the CRI-LO resulted in 372 significantly altered plasma metabolites, primarily reductions (333). Similarly, CRI-HI affected 414 metabolites, with 369 reductions, evidenced by distinct clustering post-infusion via data reduction (PCA and sPLS-DA). CRI-HI notably decreased circulating AA levels, impacting various AA-related and energy-generating metabolic pathways. Urine analysis revealed increased 3-methyl-l-histidine and glutamine, and decreased alanine concentrations post-infusion. These findings demonstrate glucagon's glucose-independent modulation of the canine plasma metabolome and highlight the dog's relevance as a translational model for glucagon biology. Understanding these effects contributes to managing dysregulated glucagon conditions and informs treatments impacting glucagon homeostasis.


Asunto(s)
Aminoácidos , Glucagón , Metaboloma , Animales , Perros , Glucagón/sangre , Glucagón/orina , Aminoácidos/orina , Aminoácidos/sangre , Metaboloma/efectos de los fármacos , Masculino , Femenino , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem , Infusiones Intravenosas , Metabolómica/métodos
14.
Gut Microbes ; 16(1): 2315632, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38375831

RESUMEN

Bile acids (BA) are among the most abundant metabolites produced by the gut microbiome. Primary BAs produced in the liver are converted by gut bacterial 7-α-dehydroxylation into secondary BAs, which can differentially regulate host health via signaling based on their varying affinity for BA receptors. Despite the importance of secondary BAs in host health, the regulation of 7-α-dehydroxylation and the role of diet in modulating this process is incompletely defined. Understanding this process could lead to dietary guidelines that beneficially shift BA metabolism. Dietary fiber regulates gut microbial composition and metabolite production. We tested the hypothesis that feeding mice a diet rich in a fermentable dietary fiber, resistant starch (RS), would alter gut bacterial BA metabolism. Male and female wild-type mice were fed a diet supplemented with RS or an isocaloric control diet (IC). Metabolic parameters were similar between groups. RS supplementation increased gut luminal deoxycholic acid (DCA) abundance. However, gut luminal cholic acid (CA) abundance, the substrate for 7-α-dehydroxylation in DCA production, was unaltered by RS. Further, RS supplementation did not change the mRNA expression of hepatic BA producing enzymes or ileal BA transporters. Metagenomic assessment of gut bacterial composition revealed no change in the relative abundance of bacteria known to perform 7-α-dehydroxylation. P. ginsenosidimutans and P. multiformis were positively correlated with gut luminal DCA abundance and increased in response to RS supplementation. These data demonstrate that RS supplementation enriches gut luminal DCA abundance without increasing the relative abundance of bacteria known to perform 7-α-dehydroxylation.


Asunto(s)
Microbioma Gastrointestinal , Almidón Resistente , Ratones , Masculino , Femenino , Animales , Microbioma Gastrointestinal/fisiología , Ácidos y Sales Biliares , Suplementos Dietéticos , Bacterias/genética , Ácido Desoxicólico
15.
Diabetes ; 72(8): 1045-1054, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37471599

RESUMEN

Since their discovery nearly five decades ago, molecular scaffolds belonging to the 14-3-3 protein family have been recognized as pleiotropic regulators of diverse cellular and physiological functions. With their ability to bind to proteins harboring specific serine and threonine phosphorylation motifs, 14-3-3 proteins can interact with and influence the function of docking proteins, enzymes, transcription factors, and transporters that have essential roles in metabolism and glucose homeostasis. Here, we will discuss the regulatory functions of 14-3-3 proteins that will be of great interest to the fields of metabolism, pancreatic ß-cell biology, and diabetes. We first describe how 14-3-3 proteins play a central role in glucose and lipid homeostasis by modulating key pathways of glucose uptake, glycolysis, oxidative phosphorylation, and adipogenesis. This is followed by a discussion of the contributions of 14-3-3 proteins to calcium-dependent exocytosis and how this relates to insulin secretion from ß-cells. As 14-3-3 proteins are major modulators of apoptosis and cell cycle progression, we will explore if 14-3-3 proteins represent a viable target for promoting ß-cell regeneration and discuss the feasibility of targeting 14-3-3 proteins to treat metabolic diseases such as diabetes. ARTICLE HIGHLIGHTS: 14-3-3 proteins are ubiquitously expressed scaffolds with multiple roles in glucose homeostasis and metabolism. 14-3-3ζ regulates adipogenesis via distinct mechanisms and is required for postnatal adiposity and adipocyte function. 14-3-3ζ controls glucose-stimulated insulin secretion from pancreatic ß-cells by regulating mitochondrial function and ATP synthesis as well as facilitating cross talk between ß-cells and α-cells.


Asunto(s)
Diabetes Mellitus , Células Secretoras de Insulina , Humanos , Proteínas 14-3-3/metabolismo , Células Secretoras de Insulina/metabolismo , Diabetes Mellitus/metabolismo , Homeostasis , Glucosa/metabolismo , Insulina/metabolismo
16.
Am J Vet Res ; 84(4)2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36773290

RESUMEN

OBJECTIVE: To compare plasma concentrations of glucagon and glucagon-like peptide-1 (GLP-1) between healthy dogs and dogs with aminoaciduric canine hypoaminoacidemic hepatopathy syndrome (ACHES) dogs. ANIMALS: Privately owned healthy (n = 5) control (CON) and ACHES (8; including 3 with diabetes mellitus) dogs enrolled between October 2, 2019, and March 4, 2020. PROCEDURES: This was a prospective case-control study. Fasting and 15-minute postprandial plasma glucagon total GLP-1 concentrations were measured with commercial immunoassays. RESULTS: Dogs with ACHES had lower fasting (median, 0.5; mean difference, 3.8; 95% CI, 0.52 to 7.0 pmol/L; P = .021) and postprandial (median, 0.35; mean difference, 5.0; 95% CI, 1.8 to 8.3 pmol/L; P = .002) plasma glucagon concentrations than CON (fasting and postprandial medians, 3.5 and 4.6 pmol/L, respectively). ACHES dogs had significantly (median, 4.15; mean difference, 12.65; 95% CI, 2.0 to 16.3 pg/ml; P = .011) lower postprandial plasma GLP-1 concentrations than CON (median, 16.8 pg/ml). There was no significant difference between fasting GLP-1 levels between the 2 groups. CLINICAL RELEVANCE: Lower postprandial plasma GLP-1 concentrations may contribute to the propensity of diabetes mellitus in ACHES. Lower glucagon concentrations may reflect an appropriate physiologic response to hypoaminoacidemia.


Asunto(s)
Enfermedades de los Perros , Glucagón , Perros , Animales , Péptido 1 Similar al Glucagón , Insulina , Estudios de Casos y Controles , Ayuno , Síndrome , Glucemia , Fragmentos de Péptidos , Periodo Posprandial/fisiología
17.
medRxiv ; 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38196612

RESUMEN

Background: Incretins are regulators of insulin secretion and glucose homeostasis that are metabolized by dipeptidyl peptidase-4 (DPP-4). Moderate-severe CKD may modify incretin release, metabolism, or response. Methods: We performed 2-hour oral glucose tolerance testing (OGTT) in 59 people with non-diabetic CKD (eGFR<60 ml/min per 1.73 m2) and 39 matched controls. We measured total (tAUC) and incremental (iAUC) area under the curve of plasma total glucagon-like peptide-1 (GLP-1) and total glucose-dependent insulinotropic polypeptide (GIP). Fasting DPP-4 levels and activity were measured. Linear regression was used to adjust for demographic, body composition, and lifestyle factors. Results: Mean eGFR was 38 ±13 and 89 ±17ml/min per 1.73 m2 in CKD and controls. GLP-1 iAUC and GIP iAUC were higher in CKD than controls with a mean of 1531 ±1452 versus 1364 ±1484 pMxmin, and 62370 ±33453 versus 42365 ±25061 pgxmin/ml, respectively. After adjustment, CKD was associated with 15271 pMxmin/ml greater GIP iAUC (95% CI 387, 30154) compared to controls. Adjustment for covariates attenuated associations of CKD with higher GLP-1 iAUC (adjusted difference, 122, 95% CI -619, 864). Plasma glucagon levels were higher at 30 minutes (mean difference, 1.6, 95% CI 0.3, 2.8 mg/dl) and 120 minutes (mean difference, 0.84, 95% CI 0.2, 1.5 mg/dl) in CKD compared to controls. There were no differences in insulin levels or plasma DPP-4 activity or levels between groups. Conclusion: Incretin response to oral glucose is preserved or augmented in moderate-severe CKD, without apparent differences in circulating DPP-4 concentration or activity. However, neither insulin secretion nor glucagon suppression are enhanced.

18.
Am J Physiol Heart Circ Physiol ; 303(7): H853-62, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-22865388

RESUMEN

Glycemic regulation improves myocardial function in diabetic patients, but finding optimal therapeutic strategies remains challenging. Recent data have shown that pharmacological inhibition of soluble epoxide hydrolase (sEH), an enzyme that decreases the endogenous levels of protective epoxyeicosatrienoic acids (EETs), improves glucose homeostasis in insulin-resistant mice. Here, we tested whether the administration of sEH inhibitors preserves cardiac myocyte structure and function in hyperglycemic rats. University of California-Davis-type 2 diabetes mellitus (UCD-T2DM) rats with nonfasting blood glucose levels in the range of 150-200 mg/dl were treated with the sEH inhibitor 1-(1-acetypiperidin-4-yl)-3-adamantanylurea (APAU) for 6 wk. Administration of APAU attenuated the progressive increase of blood glucose concentration and preserved mitochondrial structure and myofibril morphology in cardiac myocytes, as revealed by electron microscopy imaging. Fluorescence microscopy with Ca(2+) indicators also showed a 40% improvement of cardiac Ca(2+) transients in treated rats. Sarcoplasmic reticulum Ca(2+) content was decreased in both treated and untreated rats compared with control rats. However, treatment limited this reduction by 30%, suggesting that APAU may protect the intracellular Ca(2+) effector system. Using Western blot analysis on cardiac myocyte lysates, we found less downregulation of sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA), the main route of Ca(2+) reuptake in the sarcoplasmic reticulum, and lower expression of hypertrophic markers in treated versus untreated UCD-T2DM rats. In conclusion, APAU enhances the therapeutic effects of EETs, resulting in slower progression of hyperglycemia, efficient protection of myocyte structure, and reduced Ca(2+) dysregulation and SERCA remodeling in hyperglycemic rats. The results suggest that sEH/EETs may be an effective therapeutic target for cardioprotection in insulin resistance and diabetes.


Asunto(s)
Adamantano/análogos & derivados , Complicaciones de la Diabetes/prevención & control , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Inhibidores Enzimáticos/farmacología , Epóxido Hidrolasas/antagonistas & inhibidores , Cardiopatías/prevención & control , Hipoglucemiantes/uso terapéutico , Miocitos Cardíacos/efectos de los fármacos , Urea/análogos & derivados , Adamantano/farmacología , Animales , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Western Blotting , Señalización del Calcio/efectos de los fármacos , Cruzamientos Genéticos , Complicaciones de la Diabetes/sangre , Complicaciones de la Diabetes/enzimología , Complicaciones de la Diabetes/etiología , Complicaciones de la Diabetes/patología , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/enzimología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Eicosanoides/metabolismo , Epóxido Hidrolasas/metabolismo , Cardiopatías/sangre , Cardiopatías/enzimología , Cardiopatías/etiología , Cardiopatías/patología , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/ultraestructura , Miofibrillas/efectos de los fármacos , Miofibrillas/metabolismo , Ratas , Ratas Sprague-Dawley , Ratas Zucker , Retículo Sarcoplasmático/efectos de los fármacos , Retículo Sarcoplasmático/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Factores de Tiempo , Urea/farmacología
19.
Am J Physiol Regul Integr Comp Physiol ; 302(6): R657-66, 2012 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22160540

RESUMEN

Glucose in the gut lumen activates gut endocrine cells to release 5-HT, glucagon-like peptide 1/2 (GLP-1/2), and glucose-dependent insulinotropic polypeptide (GIP), which act to change gastrointestinal function and regulate postprandial plasma glucose. There is evidence that both release and action of incretin hormones is reduced in type 2 diabetes (T2D). We measured cellular activation of enteroendocrine and enterochromaffin cells, enteric neurons, and vagal afferent neurons in response to intestinal glucose in a model of type 2 diabetes mellitus, the UCD-T2DM rat. Prediabetic (PD), recent-diabetic (RD, 2 wk postonset), and 3-mo diabetic (3MD) fasted UCD-T2DM rats were given an orogastric gavage of vehicle (water, 0.5 ml /100 g body wt) or glucose (330 µmol/100 g body wt); after 6 min tissue was removed and cellular activation was determined by immunohistochemistry for phosphorylated calcium calmodulin-dependent kinase II (pCaMKII). In PD rats, pCaMKII immunoreactivity was increased in duodenal 5-HT (P < 0.001), K (P < 0.01) and L (P < 0.01) cells in response to glucose; glucose-induced activation of all three cell types was significantly reduced in RD and 3MD compared with PD rats. Immunoreactivity for GLP-1, but not GIP, was significantly reduced in RD and 3MD compared with PD rats (P < 0.01). Administration of glucose significantly increased pCaMKII in enteric and vagal afferent neurons in PD rats; glucose-induced pCaMKII immunoreactivity was attenuated in enteric and vagal afferent neurons (P < 0.01, P < 0.001, respectively) in RD and 3MD. These data suggest that glucose sensing in enteroendocrine and enterochromaffin cells and activation of neural pathways is markedly impaired in UCD-T2DM rats.


Asunto(s)
Vías Aferentes/fisiopatología , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Células Enteroendocrinas/metabolismo , Glucosa/metabolismo , Nervio Vago/fisiopatología , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Diabetes Mellitus Tipo 2/patología , Modelos Animales de Enfermedad , Células Enterocromafines/metabolismo , Células Enterocromafines/patología , Células Enteroendocrinas/patología , Polipéptido Inhibidor Gástrico/metabolismo , Péptidos Similares al Glucagón/metabolismo , Resistencia a la Insulina/fisiología , Obesidad/metabolismo , Obesidad/fisiopatología , Ratas , Ratas Sprague-Dawley , Ratas Zucker , Serotonina/metabolismo
20.
Front Endocrinol (Lausanne) ; 13: 934775, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35957816

RESUMEN

As an incretin hormone, glucagon-like peptide 1 (GLP-1) lowers blood glucose levels by enhancing glucose-stimulated insulin secretion from pancreatic beta-cells. Therapies targeting the GLP-1 receptor (GLP-1R) use the classical incretin model as a physiological framework in which GLP-1 secreted from enteroendocrine L-cells acts on the beta-cell GLP-1R. However, this model has come into question, as evidence demonstrating local, intra-islet GLP-1 production has advanced the competing hypothesis that the incretin activity of GLP-1 may reflect paracrine signaling of GLP-1 from alpha-cells on GLP-1Rs on beta-cells. Additionally, recent studies suggest that alpha-cell-derived glucagon can serve as an additional, albeit less potent, ligand for the beta-cell GLP-1R, thereby expanding the role of alpha-cells beyond that of a counterregulatory cell type. Efforts to understand the role of the alpha-cell in the regulation of islet function have revealed both transcriptional and functional heterogeneity within the alpha-cell population. Further analysis of this heterogeneity suggests that functionally distinct alpha-cell subpopulations display alterations in islet hormone profile. Thus, the role of the alpha-cell in glucose homeostasis has evolved in recent years, such that alpha-cell to beta-cell communication now presents a critical axis regulating the functional capacity of beta-cells. Herein, we describe and integrate recent advances in our understanding of the impact of alpha-cell paracrine signaling on insulin secretory dynamics and how this intra-islet crosstalk more broadly contributes to whole-body glucose regulation in health and under metabolic stress. Moreover, we explore how these conceptual changes in our understanding of intra-islet GLP-1 biology may impact our understanding of the mechanisms of incretin-based therapeutics.


Asunto(s)
Incretinas , Comunicación Paracrina , Péptido 1 Similar al Glucagón/metabolismo , Glucosa/metabolismo , Incretinas/metabolismo , Insulina/metabolismo , Secreción de Insulina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA