Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Inhal Toxicol ; 36(3): 189-204, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38466202

RESUMEN

OBJECTIVE: Inhalation of diesel exhaust (DE) has been shown to be an occupational hazard in the transportation, mining, and gas and oil industries. DE also contributes to air pollution, and therefore, is a health hazard to the general public. Because of its effects on human health, changes have been made to diesel engines to reduce both the amounts of particulate matter and volatile fumes they generate. The goal of the current study was to examine the effects of inhalation of diesel exhaust. MATERIALS AND METHODS: The study presented here specifically examines the effects of exposure to 0.2 and 1.0 mg/m3 DE or filtered air (6h/d for 4 d) on measures of peripheral and cardio-vascular function, and biomarkers of heart and kidney dysfunction in male rats. A Tier 2 engine used in oil and gas fracking operations was used to generate the diesel exhaust. RESULTS: Exposure to 0.2 mg/m3 DE resulted in an increase in blood pressure 1d following the last exposure, and increases in dobutamine-induced cardiac output and stroke volume 1 and 27d after exposure. Changes in peripheral vascular responses to norepinephrine and acetylcholine were minimal as were changes in transcript expression in the heart and kidney. Exposure to 1.0 mg/m3 DE did not result in major changes in blood pressure, measures of cardiac function, peripheral vascular function or transcript expression. DISCUSSION AND CONCLUSIONS: Based on the results of this study, we suggest that exposure to DE generated by a Tier 2 compliant diesel engine generates acute effects on biomarkers indicative of cardiovascular dysfunction. Recovery occurs quickly with most measures of vascular/cardiovascular function returning to baseline levels by 7d following exposure.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Humanos , Masculino , Ratas , Animales , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Emisiones de Vehículos/toxicidad , Emisiones de Vehículos/análisis , Material Particulado/toxicidad , Biomarcadores , Exposición por Inhalación/efectos adversos
2.
J Toxicol Environ Health A ; 86(1): 1-22, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36444639

RESUMEN

The measurement of fine (diameter: 100 nanometers-2.5 micrometers) and ultrafine (UF: < 100 nanometers) titanium dioxide (TiO2) particles is instrument dependent. Differences in measurements exist between toxicological and field investigations for the same exposure metric such as mass, number, or surface area because of variations in instruments used, operating parameters, or particle-size measurement ranges. Without appropriate comparison, instrument measurements create a disconnect between toxicological and field investigations for a given exposure metric. Our objective was to compare a variety of instruments including multiple metrics including mass, number, and surface area (SA) concentrations for assessing different concentrations of separately aerosolized fine and UF TiO2 particles. The instruments studied were (1) DustTrak™ DRX, (2) personal DataRAMs™ (PDR), (3) GRIMMTM, and (4) diffusion charger (DC). Two devices of each field-study instrument (DRX, PDR, GRIMM, and DC) were used to measure various metrics while adjusting for gravimetric mass concentrations of fine and UF TiO2 particles in controlled chamber tests. An analysis of variance (ANOVA) was used to apportion the variance to inter-instrument (between different instrument-types), inter-device (within instrument), and intra-device components. Performance of each instrument-device was calculated using root mean squared error compared to reference methods: close-faced cassette and gravimetric analysis for mass and scanning mobility particle sizer (SMPS) real-time monitoring for number and SA concentrations. Generally, inter-instrument variability accounted for the greatest (62.6% or more) source of variance for mass, and SA-based concentrations of fine and UF TiO2 particles. However, higher intra-device variability (53.7%) was observed for number concentrations measurements with fine particles compared to inter-instrument variability (40.8%). Inter-device variance range(0.5-5.5%) was similar for all exposure metrics. DRX performed better in measuring mass closer to gravimetric than PDRs for fine and UF TiO2. Number concentrations measured by GRIMMs and SA measurements by DCs were considerably (40.8-86.9%) different from the reference (SMPS) method for comparable size ranges of fine and UF TiO2. This information may serve to aid in interpreting assessments in risk models, epidemiologic studies, and development of occupational exposure limits, relating to health effect endpoints identified in toxicological studies considering similar instruments evaluated in this study.


Asunto(s)
Monitoreo del Ambiente , Exposición Profesional , Monitoreo del Ambiente/métodos , Exposición Profesional/análisis , Titanio , Tamaño de la Partícula , Aerosoles
3.
Toxicol Appl Pharmacol ; 447: 116071, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35598716

RESUMEN

Workers in the oil and gas extraction industry are at risk of inhaling volatile organic compounds. Epidemiological studies suggest oil vapor inhalation may affect cardiovascular health. Thus, in this hazard identification study we investigated the effects of inhalation of crude oil vapor (COV) on cardiovascular function. Male rats were exposed to air or COV (300 ppm) for 6 h (acute), or 6 h/day × 4 d/wk. × 4 wk. (sub-chronic). The effects of COV inhalation were assessed 1, 28, and 90 d post-exposure. Acute exposure to COV resulted in reductions in mean arterial and diastolic blood pressures 1 and 28 d after exposure, changes in nitrate-nitrite and H2O2 levels, and in the expression of transcripts and proteins that regulate inflammation, vascular remodeling, and the synthesis of nitric oxide (NO) in the heart and kidneys. The sub-chronic exposure resulted in a reduced sensitivity to α1-adrenoreceptor-mediated vasoconstriction in vitro 28 d post-exposure, and a reduction in oxidative stress in the heart. Sub-chronic COV exposure led to alterations in the expression of NO synthases and anti-oxidant enzymes, which regulate inflammation and oxidative stress in the heart and kidneys. There seems to be a balance between changes in the expression of transcripts associated with the generation of reactive oxygen species (ROS) and antioxidant enzymes. The ability of antioxidant enzymes to reduce or inhibit the effects of ROS may allow the cardiovascular system to adapt to acute COV exposures. However, sub-chronic exposures may result in longer-lasting negative health consequences on the cardiovascular system.


Asunto(s)
Sistema Cardiovascular , Petróleo , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Sistema Cardiovascular/metabolismo , Gases/farmacología , Peróxido de Hidrógeno/farmacología , Inflamación , Exposición por Inhalación/efectos adversos , Masculino , Estrés Oxidativo , Ratas , Especies Reactivas de Oxígeno/metabolismo
4.
Toxicol Appl Pharmacol ; 449: 116137, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35750205

RESUMEN

Workers in the oil and gas industry are at risk for exposure to a number of physical and chemical hazards at the workplace. Chemical hazard risks include inhalation of crude oil or its volatile components. While several studies have investigated the neurotoxic effects of volatile hydrocarbons, in general, there is a paucity of studies assessing the neurotoxicity of crude oil vapor (COV). Consequent to the 2010 Deepwater Horizon (DWH) oil spill, there is growing concern about the short- and long-term health effects of exposure to COV. NIOSH surveys suggested that the DWH oil spill cleanup workers experienced neurological symptoms, including depression and mood disorders, but the health effects apart from oil dispersants were difficult to discern. To investigate the potential neurological risks of COV, male Sprague-Dawley rats were exposed by whole-body inhalation to COV (300 ppm; Macondo surrogate crude oil) following an acute (6 h/d × 1 d) or sub-chronic (6 h/d × 4 d/wk. × 4 wks) exposure regimen. At 1, 28 or 90 d post-exposure, norepinephrine (NE), epinephrine (EPI), dopamine (DA) and serotonin (5-HT) were evaluated as neurotransmitter imbalances are associated with psychosocial-, motor- and cognitive- disorders. Sub-chronic COV exposure caused significant reductions in NE, EPI and DA in the dopaminergic brain regions, striatum (STR) and midbrain (MB), and a large increase in 5-HT in the STR. Further, sub-chronic exposure to COV caused upregulation of synaptic and Parkinson's disease-related proteins in the STR and MB. Whether such effects will lead to neurodegenerative outcomes remain to be investigated.


Asunto(s)
Síndromes de Neurotoxicidad , Contaminación por Petróleo , Petróleo , Contaminantes Químicos del Agua , Animales , Gases , Masculino , Síndromes de Neurotoxicidad/etiología , Neurotransmisores , Ratas , Ratas Sprague-Dawley , Serotonina , Contaminantes Químicos del Agua/toxicidad
5.
Arch Toxicol ; 96(12): 3201-3217, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35984461

RESUMEN

Thermal spray coating is an industrial process in which molten metal is sprayed at high velocity onto a surface as a protective coating. An automated electric arc wire thermal spray coating aerosol generator and inhalation exposure system was developed to simulate an occupational exposure and, using this system, male Sprague-Dawley rats were exposed to stainless steel PMET720 aerosols at 25 mg/m3 × 4 h/day × 9 day. Lung injury, inflammation, and cytokine alteration were determined. Resolution was assessed by evaluating these parameters at 1, 7, 14 and 28 d after exposure. The aerosols generated were also collected and characterized. Macrophages were exposed in vitro over a wide dose range (0-200 µg/ml) to determine cytotoxicity and to screen for known mechanisms of toxicity. Welding fumes were used as comparative particulate controls. In vivo lung damage, inflammation and alteration in cytokines were observed 1 day post exposure and this response resolved by day 7. Alveolar macrophages retained the particulates even after 28 day post-exposure. In line with the pulmonary toxicity findings, in vitro cytotoxicity and membrane damage in macrophages were observed only at the higher doses. Electron paramagnetic resonance showed in an acellular environment the particulate generated free radicals and a dose-dependent increase in intracellular oxidative stress and NF-kB/AP-1 activity was observed. PMET720 particles were internalized via clathrin and caveolar mediated endocytosis as well as actin-dependent pinocytosis/phagocytosis. The results suggest that compared to stainless steel welding fumes, the PMET 720 aerosols were not as overtly toxic, and the animals recovered from the acute pulmonary injury by 7 days.


Asunto(s)
Contaminantes Ocupacionales del Aire , Soldadura , Ratas , Animales , Masculino , Acero Inoxidable/toxicidad , Contaminantes Ocupacionales del Aire/toxicidad , FN-kappa B , Actinas , Factor de Transcripción AP-1 , Ratas Sprague-Dawley , Aerosoles y Gotitas Respiratorias , Soldadura/métodos , Exposición por Inhalación/efectos adversos , Pulmón , Polvo , Inflamación/patología , Citocinas , Clatrina/farmacología
6.
Inhal Toxicol ; 34(7-8): 200-218, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35648795

RESUMEN

Purpose: To investigate the molecular mechanisms underlying the pulmonary toxicity induced by exposure to one form of multi-walled carbon nanotubes (MWCNT-7).Materials and methods: Rats were exposed, by whole-body inhalation, to air or an aerosol containing MWCNT-7 particles at target cumulative doses (concentration x time) ranging from 22.5 to 180 (mg/m3)h over a three-day (6 hours/day) period and toxicity and global gene expression profiles were determined in the lungs.Results: MWCNT-7 particles, associated with alveolar macrophages (AMs), were detected in rat lungs following the exposure. Mild to moderate lung pathological changes consisting of increased cellularity, thickening of the alveolar wall, alveolitis, fibrosis, and granuloma formation were detected. Bronchoalveolar lavage (BAL) toxicity parameters such as lactate dehydrogenase activity, number of AMs and polymorphonuclear leukocytes (PMNs), intracellular oxidant generation by phagocytes, and levels of cytokines were significantly (p < 0.05) increased in response to exposure to MWCNT-7. Global gene expression profiling identified several significantly differentially expressed genes (fold change >1.5 and FDR p value <0.05) in all the MWCNT-7 exposed rats. Bioinformatic analysis of the gene expression data identified significant enrichment of several diseases/biological function categories (for example, cancer, leukocyte migration, inflammatory response, mitosis, and movement of phagocytes) and canonical pathways (for example, kinetochore metaphase signaling pathway, granulocyte and agranulocyte adhesion and diapedesis, acute phase response, and LXR/RXR activation). The alterations in the lung toxicity parameters and gene expression changes exhibited a dose-response to the MWCNT exposure.Conclusions: Taken together, the data provided insights into the molecular mechanisms underlying the pulmonary toxicity induced by inhalation exposure of rats to MWCNT-7.


Asunto(s)
Exposición por Inhalación , Nanotubos de Carbono , Animales , Líquido del Lavado Bronquioalveolar , Expresión Génica , Exposición por Inhalación/efectos adversos , Pulmón/patología , Nanotubos de Carbono/toxicidad , Ratas
7.
Inhal Toxicol ; 33(2): 66-80, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33602020

RESUMEN

OBJECTIVE: Human exposure to cellulose nanocrystal (CNC) is possible during the production and/or use of products containing CNC. The objectives of the current study were to determine the lung toxicity of CNC and the underlying molecular mechanisms of the toxicity. METHODS: Rats were exposed to air or CNC (20 mg/m3, six hours/day, 14 d) by whole-body inhalation and lung toxicity and global gene expression profile were determined. RESULTS: Significant increases in lactate dehydrogenase activity, pro-inflammatory cytokine levels, phagocyte oxidant production, and macrophage and neutrophil counts were detected in the bronchoalveolar lavage cells or fluid from the CNC exposed rats. Mild lung histological changes, such as the accumulation of macrophages and neutrophils, were detected in the CNC exposed rats. Gene expression profiling by next generation sequencing identified 531 genes whose expressions were significantly different in the lungs of the CNC exposed rats, compared with the controls. Bioinformatic analysis of the lung gene expression data identified significant enrichment in several biological functions and canonical pathways including those related to inflammation (cellular movement, immune cell trafficking, inflammatory diseases and response, respiratory disease, complement system, acute phase response, leukocyte extravasation signaling, granulocyte and agranulocyte adhesion and diapedesis, IL-10 signaling, and phagosome formation and maturation) and oxidative stress (NRF2-mediated oxidative stress response, production of nitric oxide and reactive oxygen species in macrophages, and free radical scavenging). CONCLUSION: Our data demonstrated that inhalation exposure of rats to CNC resulted in lung toxicity mediated mainly through the induction of inflammation and oxidative stress.


Asunto(s)
Celulosa/toxicidad , Regulación de la Expresión Génica/efectos de los fármacos , Exposición por Inhalación/efectos adversos , Lesión Pulmonar/inducido químicamente , Nanopartículas/toxicidad , Animales , Peso Corporal/efectos de los fármacos , Líquido del Lavado Bronquioalveolar/química , Biología Computacional , Citocinas/química , Citocinas/genética , Citocinas/metabolismo , Pulmón/patología , Masculino , Oxidantes/metabolismo , Ratas , Ratas Endogámicas F344 , Transcriptoma/efectos de los fármacos
8.
Toxicol Appl Pharmacol ; 406: 115242, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32931794

RESUMEN

Hydraulic fracturing is used to access oil and natural gas reserves. This process involves the high-pressure injection of fluid to fracture shale. Fracking fluid contains approximately 95% water, chemicals and 4.5% fracking sand. Workers may be exposed to fracking sand dust (FSD) during the manipulation of the sand, and negative health consequences could occur if FSD is inhaled. In the absence of any information about its potential toxicity, a comprehensive rat animal model study (see Fedan et al., 2020) was designed to investigate the bioactivities of several FSDs in comparison to MIN-U-SIL® 5, a respirable α-quartz reference dust used in previous animal models of silicosis, in several organ systems. The goal of this study was to assess the effects of inhalation of one FSD, i.e., FSD 8, on factors and tissues that affect cardiovascular function. Male rats were exposed to 10 or 30 mg/m3 FSD (6 h/d for 4 d) by whole body inhalation, with measurements made 1, 7 or 27 d post-exposure. One day following exposure to 10 mg/m3 FSD the sensitivity to phenylephrine-induced vasoconstriction in tail arteries in vitro was increased. FSD exposure at both doses resulted in decreases in heart rate (HR), HR variability, and blood pressure in vivo. FSD induced changes in hydrogen peroxide concentrations and transcript levels for pro-inflammatory factors in heart tissues. In kidney, expression of proteins indicative of injury and remodeling was reduced after FSD exposure. When analyzed using regression analysis, changes in proteins involved in repair and remodeling were correlated. Thus, it appears that inhalation of FSD does have some prolonged effects on cardiovascular, and, possibly, renal function. The findings also provide information regarding potential mechanisms that may lead to these changes, and biomarkers that could be examined to monitor physiological changes that could be indicative of impending cardiovascular dysfunction.


Asunto(s)
Polvo , Fracking Hidráulico , Arena , Administración por Inhalación , Animales , Presión Sanguínea , Sistema Cardiovascular , Frecuencia Cardíaca , Peróxido de Hidrógeno/metabolismo , Riñón/metabolismo , Masculino , Microvasos/fisiología , Miocardio/metabolismo , Nitratos/metabolismo , Nitritos/metabolismo , Ratas Sprague-Dawley
9.
Toxicol Appl Pharmacol ; 409: 115300, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33141058

RESUMEN

Hydraulic fracturing (fracking) is a process used to recover oil and gas from shale rock formation during unconventional drilling. Pressurized liquids containing water and sand (proppant) are used to fracture the oil- and natural gas-laden rock. The transportation and handling of proppant at well sites generate dust aerosols; thus, there is concern of worker exposure to such fracking sand dusts (FSD) by inhalation. FSD are generally composed of respirable crystalline silica and other minerals native to the geological source of the proppant material. Field investigations by NIOSH suggest that the levels of respirable crystalline silica at well sites can exceed the permissible exposure limits. Thus, from an occupational safety perspective, it is important to evaluate the potential toxicological effects of FSD, including any neurological risks. Here, we report that acute inhalation exposure of rats to one FSD, i.e., FSD 8, elicited neuroinflammation, altered the expression of blood brain barrier-related markers, and caused glial changes in the olfactory bulb, hippocampus and cerebellum. An intriguing observation was the persistent reduction of synaptophysin 1 and synaptotagmin 1 proteins in the cerebellum, indicative of synaptic disruption and/or injury. While our initial hazard identification studies suggest a likely neural risk, more research is necessary to determine if such molecular aberrations will progressively culminate in neuropathology/neurodegeneration leading to behavioral and/or functional deficits.


Asunto(s)
Inflamación/inducido químicamente , Inflamación/metabolismo , Exposición por Inhalación/efectos adversos , Arena/química , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Aerosoles/efectos adversos , Animales , Biomarcadores/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Polvo , Monitoreo del Ambiente/métodos , Fracking Hidráulico/métodos , Masculino , Exposición Profesional/efectos adversos , Ratas , Ratas Sprague-Dawley
10.
Toxicol Appl Pharmacol ; 409: 115284, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33068619

RESUMEN

Hydraulic fracturing creates fissures in subterranean rock to increase the flow and retrieval of natural gas. Sand ("proppant") in fracking fluid injected into the well bore maintains fissure patency. Fracking sand dust (FSD) is generated during manipulation of sand to prepare the fracking fluid. Containing respirable crystalline silica, FSD could pose hazards similar to those found in work sites where silica inhalation induces lung disease such as silicosis. This study was performed to evaluate the possible toxic effects following inhalation of a FSD (FSD 8) in the lung and airways. Rats were exposed (6 h/d × 4 d) to 10 or 30 mg/m3 of a FSD collected at a gas well, and measurements were performed 1, 7, 27 and, in one series of experiments, 90 d post-exposure. The following ventilatory and non-ventilatory parameters were measured in vivo and/or in vitro: 1) lung mechanics (respiratory system resistance and elastance, tissue damping, tissue elastance, Newtonian resistance and hysteresivity); 2) airway reactivity to inhaled methacholine (MCh); airway epithelium integrity (isolated, perfused trachea); airway efferent motor nerve activity (electric field stimulation in vitro); airway smooth muscle contractility; ion transport in intact and cultured epithelium; airway effector and sensory nerves; tracheal particle deposition; and neurogenic inflammation/vascular permeability. FSD 8 was without large effect on most parameters, and was not pro-inflammatory, as judged histologically and in cultured epithelial cells, but increased reactivity to inhaled MCh at some post-exposure time points and affected Na+ transport in airway epithelial cells.


Asunto(s)
Exposición por Inhalación/efectos adversos , Pulmón/efectos de los fármacos , Exposición Profesional/efectos adversos , Arena/química , Administración por Inhalación , Animales , Polvo , Células Epiteliales/efectos de los fármacos , Fracking Hidráulico/métodos , Masculino , Cloruro de Metacolina/farmacología , Ratas , Ratas Sprague-Dawley , Mucosa Respiratoria/efectos de los fármacos , Dióxido de Silicio/efectos adversos , Tráquea/efectos de los fármacos
11.
Arch Toxicol ; 91(8): 2953-2962, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28054104

RESUMEN

Epidemiologic studies suggest an increased risk of lung cancer with exposure to welding fumes, but controlled animal studies are needed to support this association. Oropharyngeal aspiration of collected "aged" gas metal arc-stainless steel (GMA-SS) welding fume has been shown by our laboratory to promote lung tumor formation in vivo using a two-stage initiation-promotion model. Our objective in this study was to determine whether inhalation of freshly generated GMA-SS welding fume also acts as a lung tumor promoter in lung tumor-susceptible mice. Male A/J mice received intraperitoneal (IP) injections of corn oil or the chemical initiator 3-methylcholanthrene (MCA; 10 µg/g) and 1 week later were exposed by whole-body inhalation to air or GMA-SS welding aerosols for 4 h/d × 4 d/w × 9 w at a target concentration of 40 mg/m3. Lung nodules were enumerated at 30 weeks post-initiation. GMA-SS fume significantly promoted lung tumor multiplicity in A/J mice initiated with MCA (16.11 ± 1.18) compared to MCA/air-exposed mice (7.93 ± 0.82). Histopathological analysis found that the increased number of lung nodules in the MCA/GMA-SS group were hyperplasias and adenomas, which was consistent with developing lung tumorigenesis. Metal deposition analysis in the lung revealed a lower deposited dose, approximately fivefold compared to our previous aspiration study, still elicited a significant lung tumorigenic response. In conclusion, this study demonstrates that inhaling GMA-SS welding fume promotes lung tumorigenesis in vivo which is consistent with the epidemiologic studies that show welders may be at an increased risk for lung cancer.


Asunto(s)
Contaminantes Ocupacionales del Aire/toxicidad , Exposición por Inhalación/efectos adversos , Neoplasias Pulmonares/inducido químicamente , Soldadura , Administración por Inhalación , Animales , Modelos Animales de Enfermedad , Neoplasias Pulmonares/patología , Masculino , Metilcolantreno/administración & dosificación , Ratones , Ratones Endogámicos , Enfermedades Profesionales/etiología , Enfermedades Profesionales/patología , Exposición Profesional/efectos adversos , Acero Inoxidable/toxicidad
12.
J Occup Environ Hyg ; 13(7): 501-18, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26873639

RESUMEN

Direct-reading instruments have been widely used for characterizing airborne nanoparticles in inhalation toxicology and industrial hygiene studies for exposure/risk assessments. Instruments using electrical mobility sizing followed by optical counting, e.g., scanning or sequential mobility particle spectrometers (SMPS), have been considered as the "gold standard" for characterizing nanoparticles. An SMPS has the advantage of rapid response and has been widely used, but there is little information on its performance in assessing the full spectrum of nanoparticles encountered in the workplace. In this study, an SMPS was evaluated for its effectiveness in producing "monodisperse" aerosol and its adequacy in characterizing overall particle size distribution using three test aerosols, each mimicking a unique class of real-life nanoparticles: singlets of nearly spherical titanium dioxide (TiO2), agglomerates of fiber-like multi-walled carbon nanotube (MWCNT), and aggregates that constitutes welding fume (WF). These aerosols were analyzed by SMPS, cascade impactor, and by counting and sizing of discrete particles by scanning and transmission electron microscopy. The effectiveness of the SMPS to produce classified particles (fixed voltage mode) was assessed by examination of the resulting geometric standard deviation (GSD) from the impactor measurement. Results indicated that SMPS performed reasonably well for TiO2 (GSD = 1.3), but not for MWCNT and WF as evidenced by the large GSD values of 1.8 and 1.5, respectively. For overall characterization, results from SMPS (scanning voltage mode) exhibited particle-dependent discrepancies in the size distribution and total number concentration compared to those from microscopic analysis. Further investigation showed that use of a single-stage impactor at the SMPS inlet could distort the size distribution and underestimate the concentration as shown by the SMPS, whereas the presence of vapor molecules or atom clusters in some test aerosols might cause artifacts by counting "phantom particles." Overall, the information obtained from this study will help understand the limitations of the SMPS in measuring nanoparticles so that one can adequately interpret the results for risk assessments and exposure prevention in an occupational or ambient environment.


Asunto(s)
Contaminantes Ocupacionales del Aire/análisis , Nanotubos de Carbono/análisis , Tamaño de la Partícula , Titanio/análisis , Soldadura , Aerosoles , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión
13.
Inhal Toxicol ; 26(12): 720-32, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25265048

RESUMEN

Welding generates complex metal aerosols, inhalation of which is linked to adverse health effects among welders. An important health concern of welding fume (WF) exposure is neurological dysfunction akin to Parkinson's disease (PD). Some applications in manufacturing industry employ a variant welding technology known as "weld-bonding" that utilizes resistance spot welding, in combination with adhesives, for metal-to-metal welding. The presence of adhesives raises additional concerns about worker exposure to potentially toxic components like Methyl Methacrylate, Bisphenol A and volatile organic compounds (VOCs). Here, we investigated the potential neurotoxicological effects of exposure to welding aerosols generated during weld-bonding. Male Sprague-Dawley rats were exposed (25 mg/m³ targeted concentration; 4 h/day × 13 days) by whole-body inhalation to filtered air or aerosols generated by either weld-bonding with sparking (high metal, low VOCs; HM) or without sparking (low metal; high VOCs; LM). Fumes generated under these conditions exhibited complex aerosols that contained both metal oxide particulates and VOCs. LM aerosols contained a greater fraction of VOCs than HM, which comprised largely metal particulates of ultrafine morphology. Short-term exposure to LM aerosols caused distinct changes in the levels of the neurotransmitters, dopamine (DA) and serotonin (5-HT), in various brain areas examined. LM aerosols also specifically decreased the mRNA expression of the olfactory marker protein (Omp) and tyrosine hydroxylase (Th) in the olfactory bulb. Consistent with the decrease in Th, LM also reduced the expression of dopamine transporter (Slc6a3; Dat), as well as, dopamine D2 receptor (Drd2) in the olfactory bulb. In contrast, HM aerosols induced the expression of Th and dopamine D5 receptor (Drd5) mRNAs, elicited neuroinflammation and blood-brain barrier-related changes in the olfactory bulb, but did not alter the expression of Omp. Our findings divulge the differential effects of LM and HM aerosols in the brain and suggest that exposure to weld-bonding aerosols can potentially elicit neurotoxicity following a short-term exposure. However, further investigations are warranted to determine if the aerosols generated by weld-bonding can contribute to persistent long-term neurological deficits and/or neurodegeneration.


Asunto(s)
Contaminantes Ocupacionales del Aire/toxicidad , Química Encefálica/efectos de los fármacos , Encéfalo/efectos de los fármacos , Exposición por Inhalación/efectos adversos , Neuronas/efectos de los fármacos , Síndromes de Neurotoxicidad/metabolismo , Soldadura , Adhesivos/química , Aerosoles , Contaminantes Ocupacionales del Aire/química , Animales , Biomarcadores/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/inmunología , Barrera Hematoencefálica/metabolismo , Encéfalo/inmunología , Encéfalo/metabolismo , Incendios , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/inmunología , Neuronas/metabolismo , Síndromes de Neurotoxicidad/inmunología , Bulbo Olfatorio/efectos de los fármacos , Bulbo Olfatorio/inmunología , Bulbo Olfatorio/metabolismo , Oxidación-Reducción , Ratas Sprague-Dawley , Acero/química , Pruebas de Toxicidad Aguda , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/toxicidad , Soldadura/métodos
14.
Inhal Toxicol ; 26(12): 708-19, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25140455

RESUMEN

Limited information exists regarding the health risks associated with inhaling aerosols that are generated during resistance spot welding of metals treated with adhesives. Toxicology studies evaluating spot welding aerosols are non-existent. A resistance spot welding aerosol generator and inhalation exposure system was developed. The system was designed by directing strips of sheet metal that were treated with an adhesive to two electrodes of a spot welder. Spot welds were made at a specified distance from each other by a computer-controlled welding gun in a fume collection chamber. Different target aerosol concentrations were maintained within the exposure chamber during a 4-h exposure period. In addition, the exposure system was run in two modes, spark and no spark, which resulted in different chemical profiles and particle size distributions. Complex aerosols were produced that contained both metal particulates and volatile organic compounds (VOCs). Size distribution of the particles was multi-modal. The majority of particles were chain-like agglomerates of ultrafine primary particles. The submicron mode of agglomerated particles accounted for the largest portion of particles in terms of particle number. Metal expulsion during spot welding caused the formation of larger, more spherical particles (spatter). These spatter particles appeared in the micron size mode and accounted for the greatest amount of particles in terms of mass. With this system, it is possible to examine potential mechanisms by which spot welding aerosols can affect health, as well as assess which component of the aerosol may be responsible for adverse health outcomes.


Asunto(s)
Adhesivos/química , Contaminantes Ocupacionales del Aire/toxicidad , Exposición por Inhalación/efectos adversos , Metales/química , Pruebas de Toxicidad/instrumentación , Soldadura , Aerosoles , Contaminantes Ocupacionales del Aire/química , Animales , Animales de Laboratorio , Cámaras de Exposición Atmosférica , Automatización de Laboratorios , Incendios , Microscopía Electrónica de Rastreo , National Institute for Occupational Safety and Health, U.S. , Tamaño de la Partícula , Material Particulado/química , Material Particulado/toxicidad , Acero/química , Estados Unidos , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/toxicidad , Soldadura/métodos
15.
Nanotoxicology ; 17(10): 669-686, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38116948

RESUMEN

Thermal spray coating is a process in which molten metal is sprayed onto a surface. Little is known about the health effects associated with these aerosols. Sprague-Dawley rats were exposed to aerosols (25 mg/m3 × 4 hr/d × 4 d) generated during thermal spray coating using different consumables [i.e. stainless-steel wire (PMET731), Ni-based wire (PMET885), Zn-based wire (PMET540)]. Control animals received air. Bronchoalveolar lavage was performed at 4 and 30 d post-exposure to assess lung toxicity. The particles were chain-like agglomerates and similar in size (310-378 nm). Inhalation of PMET885 aerosol caused a significant increase in lung injury and inflammation at both time points. Inhalation of PMET540 aerosol caused a slight but significant increase in lung toxicity at 4 but not 30 d. Exposure to PMET731 aerosol had no effect on lung toxicity. Overall, the lung responses were in the order: PMET885≫PMET540 >PMT731. Following a shorter exposure (25 mg/m3 × 4 h/d × 1d), lung burdens of metals from the different aerosols were determined by ICP-AES at 0, 1, 4 and 30 d post-exposure. Zn was cleared from the lungs at the fastest rate with complete clearance by 4 d post-exposure. Ni, Cr, and Mn had similar rates of clearance as nearly half of the deposited metal was cleared by 4 d. A small but significant percentage of each of these metals persisted in the lungs at 30 d. The pulmonary clearance of Fe was difficult to assess because of inherently high levels of Fe in control lungs.


Asunto(s)
Pulmón , Aerosoles y Gotitas Respiratorias , Ratas , Animales , Ratas Sprague-Dawley , Administración por Inhalación , Metales/toxicidad , Aerosoles , Exposición por Inhalación , Líquido del Lavado Bronquioalveolar , Tamaño de la Partícula
16.
Inhal Toxicol ; 24(12): 798-820, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23033994

RESUMEN

This study intends to develop protocols for sampling and characterizing multi-walled carbon nanotube (MWCNT) aerosols in workplaces or during inhalation studies. Manufactured dry powder containing MWCNT's, combined with soot and metal catalysts, form complex morphologies and diverse shapes. The aerosols, examined in this study, were produced using an acoustical generator. Representative samples were collected from an exposure chamber using filters and a cascade impactor for microscopic and gravimetric analyses. Results from filters showed that a density of 0.008-0.10 particles per µm² filter surface provided adequate samples for particle counting and sizing. Microscopic counting indicated that MWCNT's, resuspended at a concentration of 10 mg/m³, contained 2.7 × 104 particles/cm³. Each particle structure contained an average of 18 nanotubes, resulting in a total of 4.9 × 105 nanotubes/cm³. In addition, fibrous particles within the aerosol had a count median length of 3.04 µm and a width of 100.3 nm, while the isometric particles had a count median diameter of 0.90 µm. A combination of impactor and microscopic measurements established that the mass median aerodynamic diameter of the mixture was 1.5 µm. It was also determined that the mean effective density of well-defined isometric particles was between 0.71 and 0.88 g/cm³, and the mean shape factor of individual nanotubes was between 1.94 and 2.71. The information obtained from this study can be used for designing animal inhalation exposure studies and adopted as guidance for sampling and characterizing MWCNT aerosols in workplaces. The measurement scheme should be relevant for any carbon nanotube aerosol.


Asunto(s)
Monitoreo del Ambiente/instrumentación , Monitoreo del Ambiente/métodos , Nanotubos de Carbono/química , Material Particulado/química , Aerosoles , Filtros de Aire , Algoritmos , Animales , Cámaras de Exposición Atmosférica , Humanos , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Nanofibras/análisis , Nanofibras/química , Nanofibras/ultraestructura , Nanotubos de Carbono/análisis , Nanotubos de Carbono/ultraestructura , Tamaño de la Partícula , Material Particulado/análisis , Estadística como Asunto , Propiedades de Superficie , Lugar de Trabajo
17.
Inhal Toxicol ; 24(9): 570-9, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22861000

RESUMEN

Minimally invasive approaches to detect/predict target organ toxicity have significant practical applications in occupational toxicology. The potential application of peripheral blood transcriptomics as a practical approach to study the mechanisms of silica-induced pulmonary toxicity was investigated. Rats were exposed by inhalation to crystalline silica (15 mg/m(3), 6 h/day, 5 days) and pulmonary toxicity and global gene expression profiles of lungs and peripheral blood were determined at 32 weeks following termination of exposure. A significant elevation in bronchoalveolar lavage fluid lactate dehydrogenase activity and moderate histological changes in the lungs, including type II pneumocyte hyperplasia and fibrosis, indicated pulmonary toxicity in the rats. Similarly, significant infiltration of neutrophils and elevated monocyte chemotactic protein-1 levels in the lungs showed pulmonary inflammation in the rats. Microarray analysis of global gene expression profiles identified significant differential expression [>1.5-fold change and false discovery rate (FDR) p < 0.01] of 520 and 537 genes, respectively, in the lungs and blood of the exposed rats. Bioinformatics analysis of the differentially expressed genes demonstrated significant similarity in the biological processes, molecular networks, and canonical pathways enriched by silica exposure in the lungs and blood of the rats. Several genes involved in functions relevant to silica-induced pulmonary toxicity such as inflammation, respiratory diseases, cancer, cellular movement, fibrosis, etc, were found significantly differentially expressed in the lungs and blood of the silica-exposed rats. The results of this study suggested the potential application of peripheral blood gene expression profiling as a toxicologically relevant and minimally invasive surrogate approach to study the mechanisms underlying silica-induced pulmonary toxicity.


Asunto(s)
Perfilación de la Expresión Génica , Pulmón/efectos de los fármacos , Cuarzo/toxicidad , Administración por Inhalación , Animales , Líquido del Lavado Bronquioalveolar/química , Líquido del Lavado Bronquioalveolar/citología , Recuento de Células , L-Lactato Deshidrogenasa/metabolismo , Pulmón/metabolismo , Pulmón/patología , Masculino , Análisis por Micromatrices , Neumonía/inducido químicamente , Neumonía/metabolismo , Neumonía/patología , Ratas , Ratas Endogámicas F344
18.
Toxicol Rep ; 9: 126-135, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35127456

RESUMEN

Thermal spray coating involves spraying a product (oftentimes metal) that is melted by extremely high temperatures and then applied under pressure onto a surface. Large amounts of a complex metal aerosol (e.g., Fe, Cr, Ni, Zn) are formed during the process, presenting a potentially serious risk to the operator. Information about the health effects associated with exposure to these aerosols is lacking. Even less is known about the chemical and physical properties of these aerosols. The goal was to develop and test an automated thermal spray coating aerosol generator and inhalation exposure system that would simulate workplace exposures. An electric arc wire-thermal spray coating aerosol generator and exposure system was designed and separated into two areas: (1) an enclosed room where the spray coating occurs; (2) an exposure chamber with different measurement devices and controllers. The physicochemical properties of aerosols generated during electric arc wire-thermal spray coating using five different consumable wires were examined. The metal composition of each was determined by inductively coupled plasma-atomic emission spectroscopy (ICP-AES), including two stainless-steel wires [PMET720 (82 % Fe, 13 % Cr); PMET731(66 % Fe, 26 % Cr)], two Ni-based wires [PMET876 (55 % Ni, 17 % Cr); PMET885 (97 % Ni)], and one Zn-based wire [PMET540 (99 % Zn)]. The particles generated regardless of composition were poorly soluble, complex metal oxides and mostly arranged as chain-like agglomerates and similar in size distribution as determined by micro-orifice uniform deposit impactor (MOUDI) and electrical low-pressure impactor (ELPI). To allow for continuous, sequential spray coating during a 4-hr exposure period, a motor rotated the metal pipe to be coated in a circular and up-and-down direction. In a pilot animal study, male Sprague-Dawley rats were exposed to aerosols (25 mg/m3 × 4 h/d × 9 d) generated from electric arc wire- thermal spray coating using the stainless-steel PMET720 consumable wire. The targeted exposure chamber concentration was achieved and maintained during a 4-hr period. At 1 d after exposure, lung injury and inflammation were significantly elevated in the group exposed to the thermal spray coating aerosol compared to the air control group. The system was designed and constructed for future animal exposure studies to generate continuous metal spray coating aerosols at a targeted concentration for extended periods of time without interruption.

19.
J Toxicol Environ Health A ; 74(21): 1368-80, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21916743

RESUMEN

An automated whole-body inhalation exposure system capable of exposing 12 individually housed rats was designed to examine the potential adverse health effects of the oil dispersant COREXIT EC9500A, used extensively during the Deepwater Horizon oil spill. A computer-controlled syringe pump injected the COREXIT EC9500A into an atomizer where droplets and vapor were formed and mixed with diluent air. The aerosolized COREXIT EC9500A was passed into a customized exposure chamber where a calibrated light-scattering instrument estimated the real-time particle mass concentration of the aerosol in the chamber. Software feedback loops controlled the chamber aerosol concentration and pressure throughout each exposure. The particle size distribution of the dispersant aerosol was measured and shown to have a count median aerodynamic diameter of 285 nm with a geometric standard deviation of 1.7. The total chamber concentration (particulate + vapor) was determined using a modification of the acidified methylene blue spectrophotometric assay for anionic surfactants. Tests were conducted to show the effectiveness of closed loop control of chamber concentration and to verify chamber concentration homogeneity. Five automated 5-h animal exposures were performed that produced controlled and consistent COREXIT EC9500A concentrations (27.1 ± 2.9 mg/m(3), mean ± SD).


Asunto(s)
Emulsionantes/toxicidad , Restauración y Remediación Ambiental/efectos adversos , Exposición por Inhalación/efectos adversos , Lípidos/toxicidad , Modelos Animales , Contaminación por Petróleo , Pruebas de Toxicidad/métodos , Aerosoles , Animales , Masculino , Ratas , Ratas Sprague-Dawley , Programas Informáticos , Pruebas de Toxicidad/instrumentación
20.
Res Rep Health Eff Inst ; (164): 3-48, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22329339

RESUMEN

Pulmonary particulate matter (PM) exposure has been epidemiologically associated with an increased risk of cardiovascular morbidity and mortality, but the mechanistic foundations for this association are unclear. Exposure to certain types of PM causes changes in the vascular reactivity of several macrovascular segments. However, no studies have focused upon the systemic microcirculation, which is the primary site for the development of peripheral resistance and, typically, the site of origin for numerous pathologies. Ultrafine PM--also referred to as nanoparticles, which are defined as ambient and engineered particles with at least one physical dimension less than 100 nm (Oberdorster et al. 2005)--has been suggested to be more toxic than its larger counterparts by virtue of a larger surface area per unit mass. The purpose of this study was fourfold: (1) determine whether particle size affects the severity of postexposure microvascular dysfunction; (2) characterize alterations in microvascular nitric oxide (NO) production after PM exposure; (3) determine whether alterations in microvascular oxidative stress are associated with NO production, arteriolar dysfunction, or both; and (4) determine whether circulating inflammatory mediators, leukocytes, neurologic mechanisms, or a combination of these play a fundamental role in mediating pulmonary PM exposure and peripheral microvascular dysfunction. To achieve these goals, we created an inhalation chamber that generates stable titanium dioxide (TiO2) aerosols at concentrations up to 20 mg/m3. TiO2 is a well-characterized particle devoid of soluble metals. Sprague Dawley and Fischer 344 (F-344) rats were exposed to fine or nano-TiO2 PM (primary count modes of approximately 710 nm and approximately 100 nm in diameter, respectively) at concentrations of 1.5 to 16 mg/m3 for 4 to 12 hours to produce pulmonary loads of 7 to 150 microg in each rat. Twenty-four hours after pulmonary exposure, the following procedures were performed: the spinotrapezius muscle was prepared for in vivo microscopy, blood samples were taken from an arterial line, and various tissues were harvested for histologic and immunohistochemical analyses. Some rats received a bolus dose of cyclophosphamide 3 days prior to PM exposure to deplete circulating neutrophils and bronchoalveolar lavage (BAL) was performed in separate groups of rats exposed to identical TiO2 loads. No significant differences in BAL fluid composition based on PM size or load were found in these rats. Plasma levels of interleukin (IL)-2, IL-18, IL-13, and growth-related oncogene (GRO) (also known as keratinocyte-derived-chemokine [KC]) were altered after PM exposure. In rats exposed to fine TiO2, endothelium-dependent arteriolar dilation was significantly decreased, and this dysfunction was robustly augmented in rats exposed to nano-TiO2. This effect was not related to an altered smooth-muscle responsiveness to NO because arterioles in both groups dilated comparably in response to the NO donor sodium nitroprusside (SNP). Endogenous microvascular NO production was similarly decreased after inhalation of either fine or nano-TiO2 in a dose-dependent manner. Microvascular oxidative stress was significantly increased among both exposure groups. Furthermore, treatment with antioxidants (2,2,6,6-tetramethylpiperdine-N-oxyl [TEMPOL] plus catalase), the myeloperoxidase (MPO) inhibitor 4-aminobenzoic hydrazide (ABAH), or the nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase) inhibitor apocynin partially restored NO production and normalized arteriolar function in both groups. Neutrophil depletion restored dilation in PM-exposed rats by as much as 42%. Coincubation of the spinotrapezius muscle with the fast sodium (Na+) channel antagonist tetrodotoxin (TTX) restored arteriolar dilation by as much as 54%, suggesting that sympathetic neural input may be affected by PM exposure. The results of these experiments indicate that (1) the size of inhaled PM dictates the intensity of systemic microvascular dysfunction; (2) this arteriolar dysfunction is characterized by a decreased bioavailability of endogenous NO; (3) the loss of bioavailable NO after PM exposure is at least partially caused by elevations in local oxidative stress, MPO activity, NADPH oxidase activity, or a combination of these responses; and (4) circulating neutrophils and sympathetic neurogenic mechanisms also appear to be involved in the systemic microvascular dysfunction that follows PM exposure. Taken together, these mechanistic studies support prominent hypotheses that suggest peripheral vascular effects associated with PM exposure are due to the activation of inflammatory mechanisms, neurogenic mechanisms, or both.


Asunto(s)
Arteriolas/efectos de los fármacos , Pulmón/irrigación sanguínea , Nanopartículas/efectos adversos , Material Particulado/efectos adversos , Administración por Inhalación , Animales , Arteriolas/patología , Arteriolas/fisiopatología , Análisis Químico de la Sangre , Líquido del Lavado Bronquioalveolar/química , Dilatación Patológica/inducido químicamente , Relación Dosis-Respuesta a Droga , Pulmón/efectos de los fármacos , Pulmón/patología , Masculino , Nanopartículas/administración & dosificación , Tamaño de la Partícula , Material Particulado/administración & dosificación , Material Particulado/sangre , Ratas , Ratas Endogámicas F344 , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA