Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Physiol Rev ; 104(3): 1387-1408, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38451234

RESUMEN

Effective data management is crucial for scientific integrity and reproducibility, a cornerstone of scientific progress. Well-organized and well-documented data enable validation and building on results. Data management encompasses activities including organization, documentation, storage, sharing, and preservation. Robust data management establishes credibility, fostering trust within the scientific community and benefiting researchers' careers. In experimental biomedicine, comprehensive data management is vital due to the typically intricate protocols, extensive metadata, and large datasets. Low-throughput experiments, in particular, require careful management to address variations and errors in protocols and raw data quality. Transparent and accountable research practices rely on accurate documentation of procedures, data collection, and analysis methods. Proper data management ensures long-term preservation and accessibility of valuable datasets. Well-managed data can be revisited, contributing to cumulative knowledge and potential new discoveries. Publicly funded research has an added responsibility for transparency, resource allocation, and avoiding redundancy. Meeting funding agency expectations increasingly requires rigorous methodologies, adherence to standards, comprehensive documentation, and widespread sharing of data, code, and other auxiliary resources. This review provides critical insights into raw and processed data, metadata, high-throughput versus low-throughput datasets, a common language for documentation, experimental and reporting guidelines, efficient data management systems, sharing practices, and relevant repositories. We systematically present available resources and optimal practices for wide use by experimental biomedical researchers.


Asunto(s)
Investigación Biomédica , Manejo de Datos , Difusión de la Información , Investigación Biomédica/normas , Investigación Biomédica/métodos , Difusión de la Información/métodos , Humanos , Animales , Manejo de Datos/métodos
2.
Clin Sci (Lond) ; 137(17): 1347-1372, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37565250

RESUMEN

Maternal obesity (MO) is rising worldwide, affecting half of all gestations, constituting a possible risk-factor for some pregnancy-associated liver diseases (PALD) and hepatic diseases. PALD occur in approximately 3% of pregnancies and are characterized by maternal hepatic oxidative stress (OS) and mitochondrial dysfunction. Maternal hepatic disease increases maternal and fetal morbidity and mortality. Understanding the role of MO on liver function and pathophysiology could be crucial for better understanding the altered pathways leading to PALD and liver disease, possibly paving the way to prevention and adequate management of disease. We investigated specific hepatic metabolic alterations in mitochondria and oxidative stress during MO at late-gestation. Maternal hepatic tissue was collected at 90% gestation in Control and MO ewes (fed 150% of recommended nutrition starting 60 days before conception). Maternal hepatic redox state, mitochondrial respiratory chain (MRC), and OS markers were investigated. MO decreased MRC complex-II activity and its subunits SDHA and SDHB protein expression, increased complex-I and complex-IV activities despite reduced complex-IV subunit mtCO1 protein expression, and increased ATP synthase ATP5A subunit. Hepatic MO-metabolic remodeling was characterized by decreased adenine nucleotide translocator 1 and 2 (ANT-1/2) and voltage-dependent anion channel (VDAC) protein expression and protein kinase A (PKA) activity (P<0.01), and augmented NAD+/NADH ratio due to reduced NADH levels (P<0.01). MO showed an altered redox state with increased OS, increased lipid peroxidation (P<0.01), decreased GSH/GSSG ratio (P=0.005), increased superoxide dismutase (P=0.03) and decreased catalase (P=0.03) antioxidant enzymatic activities, lower catalase, glutathione peroxidase (GPX)-4 and glutathione reductase protein expression (P<0.05), and increased GPX-1 abundance (P=0.03). MO-related hepatic changes were more evident in the right lobe, corroborated by the integrative data analysis. Hepatic tissue from obese pregnant ewes showed alterations in the redox state, consistent with OS and MRC and metabolism remodeling. These are hallmarks of PALD and hepatic disease, supporting MO as a risk-factor and highlighting OS and mitochondrial dysfunction as mechanisms responsible for liver disease predisposition.


Asunto(s)
Hepatopatías , NAD , Humanos , Femenino , Embarazo , Animales , Ovinos , Catalasa/metabolismo , NAD/metabolismo , Hígado/metabolismo , Estrés Oxidativo , Obesidad/metabolismo , Antioxidantes/metabolismo , Hepatopatías/metabolismo , Superóxido Dismutasa/metabolismo , Glutatión/metabolismo
3.
Int J Mol Sci ; 24(20)2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37894873

RESUMEN

Intra-uterine growth restriction (IUGR) is a common cause of fetal/neonatal morbidity and mortality and is associated with increased offspring predisposition for cardiovascular disease (CVD) development. Mitochondria are essential organelles in maintaining cardiac function, and thus, fetal cardiac mitochondria could be responsive to the IUGR environment. In this study, we investigated whether in utero fetal cardiac mitochondrial programming can be detectable in an early stage of IUGR pregnancy. Using a well-established nonhuman IUGR primate model, we induced IUGR by reducing by 30% the maternal diet (MNR), both in males (MNR-M) and in female (MNR-F) fetuses. Fetal cardiac left ventricle (LV) tissue and blood were collected at 90 days of gestation (0.5 gestation, 0.5 G). Blood biochemical parameters were determined and heart LV mitochondrial biology assessed. MNR fetus biochemical blood parameters confirm an early fetal response to MNR. In addition, we show that in utero cardiac mitochondrial MNR adaptations are already detectable at this early stage, in a sex-divergent way. MNR induced alterations in the cardiac gene expression of oxidative phosphorylation (OXPHOS) subunits (mostly for complex-I, III, and ATP synthase), along with increased protein content for complex-I, -III, and -IV subunits only for MNR-M in comparison with male controls, highlight the fetal cardiac sex-divergent response to MNR. At this fetal stage, no major alterations were detected in mitochondrial DNA copy number nor markers for oxidative stress. This study shows that in 90-day nonhuman primate fetuses, a 30% decrease in maternal nutrition generated early in utero adaptations in fetal blood biochemical parameters and sex-specific alterations in cardiac left ventricle gene and protein expression profiles, affecting predominantly OXPHOS subunits. Since the OXPHOS system is determinant for energy production in mitochondria, our findings suggest that these early IUGR-induced mitochondrial adaptations play a role in offspring's mitochondrial dysfunction and can increase predisposition to CVD in a sex-specific way.


Asunto(s)
Enfermedades Cardiovasculares , Desarrollo Fetal , Embarazo , Humanos , Animales , Masculino , Femenino , Feto/metabolismo , Retardo del Crecimiento Fetal/metabolismo , Primates , Nutrientes , Enfermedades Cardiovasculares/metabolismo
4.
Eur J Clin Invest ; 52(9): e13798, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35467758

RESUMEN

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a fatal and rapidly progressing neurodegenerative disease that affects motor neurons. This disease is associated with oxidative stress especially in mutant superoxide dismutase 1 (mutSOD1) patients. However, less is known for the most prevalent sporadic ALS form, due to a lack of disease models. Here, we studied oxidative stress profiles in lymphoblasts from ALS patients with mutSOD1 or unknown (undSOD1) mutations. METHODS: mutSOD1 and undSOD1 lymphoblasts, as well as sex/age-matched controls (3/group) were obtained from Coriell and divided into 46 years-old-men (C1), 46 years-old-women (C2) or 26/27 years-old-men (C3) cohorts. Growth curves were performed, and several parameters associated with redox homeostasis were evaluated, including SOD activity and expression, general oxidative stress levels, lipid peroxidation, response to oxidative stimulus, glutathione redox cycle, catalase expression, and activity, and Nrf2 transcripts. Pooled (all cohorts) and paired (intra-cohort) statistical analyses were performed, followed by clustering and principal component analyses (PCA). RESULTS: Although a high heterogeneity among lymphoblast redox profiles was found between cohorts, clustering analysis based on 7 parameters with high chi-square ranking (total SOD activity, oxidative stress levels, catalase transcripts, SOD1 protein levels, metabolic response to mM concentrations of tert-butyl hydroperoxide, glutathione reductase activity, and Nrf2 transcript levels) provided a perfect cluster segregation between samples from healthy controls and ALS (undSOD1 and mutSOD1), also visualized in the PCA. CONCLUSIONS: Our results show distinct redox signatures in lymphoblasts from mutSOD1, undSOD1 and healthy controls that can be used as therapeutic targets for ALS drug development.


Asunto(s)
Esclerosis Amiotrófica Lateral , Superóxido Dismutasa-1 , Adulto , Esclerosis Amiotrófica Lateral/genética , Catalasa/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación , Factor 2 Relacionado con NF-E2/genética , Oxidación-Reducción , Superóxido Dismutasa-1/genética
5.
FASEB J ; 35(12): e22024, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34751984

RESUMEN

Alterations in mitochondrial dynamics, including their intracellular trafficking, are common early manifestations of neuronal degeneration. However, current methodologies used to study mitochondrial trafficking events rely on parameters that are primarily altered in later stages of neurodegeneration. Our objective was to establish a reliable applied statistical analysis to detect early alterations in neuronal mitochondrial trafficking. We propose a novel quantitative analysis of mitochondria trajectories based on innovative movement descriptors, including straightness, efficiency, anisotropy, and kurtosis. We evaluated time- and dose-dependent alterations in trajectory descriptors using biological data from differentiated SH-SY5Y cells treated with the mitochondrial toxicants 6-hydroxydopamine and rotenone. MitoTracker Red CMXRos-labelled mitochondria movement was analyzed by total internal reflection fluorescence microscopy followed by computational modelling to describe the process. Based on the aforementioned trajectory descriptors, this innovative analysis of mitochondria trajectories provides insights into mitochondrial movement characteristics and can be a consistent and sensitive method to detect alterations in mitochondrial trafficking occurring in the earliest time points of neurodegeneration.


Asunto(s)
Mitocondrias/patología , Dinámicas Mitocondriales , Neuroblastoma/patología , Neuronas/patología , Oxidopamina/efectos adversos , Rotenona/efectos adversos , Adrenérgicos/efectos adversos , Diferenciación Celular , Humanos , Mitocondrias/efectos de los fármacos , Neuroblastoma/inducido químicamente , Neuronas/efectos de los fármacos , Desacopladores/efectos adversos
6.
Int J Mol Sci ; 23(6)2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35328430

RESUMEN

With the increase in life expectancy and consequent aging of the world's population, the prevalence of many neurodegenerative diseases is increasing, without concomitant improvement in diagnostics and therapeutics. These diseases share neuropathological hallmarks, including mitochondrial dysfunction. In fact, as mitochondrial alterations appear prior to neuronal cell death at an early phase of a disease's onset, the study and modulation of mitochondrial alterations have emerged as promising strategies to predict and prevent neurotoxicity and neuronal cell death before the onset of cell viability alterations. In this work, differentiated SH-SY5Y cells were treated with the mitochondrial-targeted neurotoxicants 6-hydroxydopamine and rotenone. These compounds were used at different concentrations and for different time points to understand the similarities and differences in their mechanisms of action. To accomplish this, data on mitochondrial parameters were acquired and analyzed using unsupervised (hierarchical clustering) and supervised (decision tree) machine learning methods. Both biochemical and computational analyses resulted in an evident distinction between the neurotoxic effects of 6-hydroxydopamine and rotenone, specifically for the highest concentrations of both compounds.


Asunto(s)
Fármacos Neuroprotectores , Síndromes de Neurotoxicidad , Apoptosis , Muerte Celular , Línea Celular Tumoral , Supervivencia Celular , Humanos , Fármacos Neuroprotectores/farmacología , Síndromes de Neurotoxicidad/etiología , Oxidopamina/toxicidad , Rotenona/toxicidad
7.
Eur J Clin Invest ; 51(2): e13375, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32780417

RESUMEN

BACKGROUND: Changes in the nutritional environment in utero induced by maternal obesity (MO) lead to foetal metabolic dysfunction predisposing offspring to later-life metabolic diseases. Since mitochondria play a crucial role in hepatic metabolism and function, we hypothesized that MO prior to conception and throughout pregnancy programmes foetal sheep liver mitochondrial phenotype. MATERIAL AND METHODS: Ewes ate an obesogenic diet (150% requirements; MO), or 100% requirements (CTR), from 60 days prior to conception. Foetal livers were removed at 0.9 gestation. We measured foetal liver mitochondrial DNA copy number, activity of superoxide dismutase, cathepsins B and D and selected protein content, total phospholipids and cardiolipin and activity of mitochondrial respiratory chain complexes. RESULTS: A significant decrease in activities of mitochondrial complexes I, II-III and IV, but not aconitase, was observed in MO. In the antioxidant machinery, there was a significant increase in activity of total superoxide dismutase (SOD) and SOD2 in MO. However, no differences were found regarding autophagy-related protein content (p62, beclin-I, LC3-I, LC3-II and Lamp2A) and cathepsin B and D activities. A 21.5% decrease in total mitochondrial phospholipid was observed in MO. CONCLUSIONS: The data indicate that MO impairs foetal hepatic mitochondrial oxidative capacity and affects total mitochondrial phospholipid content. In addition, MO affects the regulation of foetal liver redox pathways, indicating metabolic adaptations to the higher foetal lipid environment. Consequences of in utero programming of foetal hepatic metabolism may persist and compromise mitochondrial bioenergetics in later life, and increase susceptibility to metabolic diseases.


Asunto(s)
Autofagia/fisiología , Transporte de Electrón/fisiología , Feto/metabolismo , Hígado/metabolismo , Mitocondrias Hepáticas/metabolismo , Obesidad Materna/metabolismo , Animales , Beclina-1/metabolismo , Cardiolipinas/metabolismo , Catepsina B/metabolismo , Catepsina D/metabolismo , Femenino , Proteínas Asociadas a Microtúbulos/metabolismo , Fosfolípidos/metabolismo , Embarazo , Ovinos , Superóxido Dismutasa/metabolismo
8.
Clin Sci (Lond) ; 135(9): 1103-1126, 2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33899910

RESUMEN

Poor maternal nutrition in pregnancy affects fetal development, predisposing offspring to cardiometabolic diseases. The role of mitochondria during fetal development on later-life cardiac dysfunction caused by maternal nutrient reduction (MNR) remains unexplored. We hypothesized that MNR during gestation causes fetal cardiac bioenergetic deficits, compromising cardiac mitochondrial metabolism and reserve capacity. To enable human translation, we developed a primate baboon model (Papio spp.) of moderate MNR in which mothers receive 70% of control nutrition during pregnancy, resulting in intrauterine growth restriction (IUGR) offspring and later exhibiting myocardial remodeling and heart failure at human equivalent ∼25 years. Term control and MNR baboon offspring were necropsied following cesarean-section, and left ventricle (LV) samples were collected. MNR adversely impacted fetal cardiac LV mitochondria in a sex-dependent fashion. Increased maternal plasma aspartate aminotransferase, creatine phosphokinase (CPK), and elevated cortisol levels in MNR concomitant with decreased blood insulin in male fetal MNR were measured. MNR resulted in a two-fold increase in fetal LV mitochondrial DNA (mtDNA). MNR resulted in increased transcripts for several respiratory chain (NDUFB8, UQCRC1, and cytochrome c) and adenosine triphosphate (ATP) synthase proteins. However, MNR fetal LV mitochondrial complex I and complex II/III activities were significantly decreased, possibly contributing to the 73% decreased ATP content and increased lipid peroxidation. MNR fetal LV showed mitochondria with sparse and disarranged cristae dysmorphology. Conclusion: MNR disruption of fetal cardiac mitochondrial fitness likely contributes to the documented developmental programming of adult cardiac dysfunction, indicating a programmed mitochondrial inability to deliver sufficient energy to cardiac tissues as a chronic mechanism for later-life heart failure.


Asunto(s)
Trastornos Nutricionales en el Feto/metabolismo , Fenómenos Fisiologicos Nutricionales Maternos , Mitocondrias Cardíacas/metabolismo , Nucleótidos de Adenina/metabolismo , Animales , Femenino , Trastornos Nutricionales en el Feto/patología , Mitocondrias Cardíacas/ultraestructura , Estrés Oxidativo , Papio , Embarazo
9.
Arch Toxicol ; 94(1): 257-271, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31768571

RESUMEN

Circadian rhythms disruption can be the cause of chronic diseases. External cues, including therapeutic drugs, have been shown to modulate peripheral-circadian clocks. Since anthracycline cardiotoxicity is associated with loss of mitochondrial function and metabolic remodeling, we investigated whether the energetic failure induced by sub-chronic doxorubicin (DOX) treatment in juvenile mice was associated with persistent disruption of circadian regulators. Juvenile C57BL/6J male mice were subjected to a sub-chronic DOX treatment (4 weekly injections of 5 mg/kg DOX) and several cardiac parameters, as well as circadian-gene expression and acetylation patterns, were analyzed after 6 weeks of recovery time. Complementary experiments were performed with Mouse Embryonic Fibroblasts (MEFs) and Human Embryonic Kidney 293 cells. DOX-treated juvenile mice showed cardiotoxicity markers and persistent alterations of transcriptional- and signaling cardiac circadian homeostasis. The results showed a delayed influence of DOX on gene expression, accompanied by changes in SIRT1-mediated cyclic deacetylation. The mechanism behind DOX interference with the circadian clock was further studied in vitro, in which were observed alterations of circadian-gene expression and increased BMAL1 SIRT1-mediated deacetylation. In conclusion, DOX treatment in juvenile mice resulted in disruption of oscillatory molecular mechanisms including gene expression and acetylation profiles.


Asunto(s)
Ritmo Circadiano/efectos de los fármacos , Doxorrubicina/efectos adversos , Cardiopatías/inducido químicamente , Acetilación/efectos de los fármacos , Animales , Antibióticos Antineoplásicos/efectos adversos , Ritmo Circadiano/genética , Ritmo Circadiano/fisiología , Fibroblastos/efectos de los fármacos , Fibroblastos/fisiología , Regulación de la Expresión Génica/genética , Células HEK293 , Cardiopatías/fisiopatología , Homeostasis/efectos de los fármacos , Humanos , Masculino , Ratones Endogámicos C57BL , Sirtuina 1/metabolismo , Sirtuinas/genética , Pruebas de Toxicidad Subcrónica
10.
Int J Mol Sci ; 20(19)2019 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-31623305

RESUMEN

Worldwide, several million workers are employed in the various chromium (Cr) industries. These workers may suffer from a variety of adverse health effects produced by dusts, mists and fumes containing Cr in the hexavalent oxidation state, Cr(VI). Of major importance, occupational exposure to Cr(VI) compounds has been firmly associated with the development of lung cancer. Counterintuitively, Cr(VI) is mostly unreactive towards most biomolecules, including nucleic acids. However, its intracellular reduction produces several species that react extensively with biomolecules. The diversity and chemical versatility of these species add great complexity to the study of the molecular mechanisms underlying Cr(VI) toxicity and carcinogenicity. As a consequence, these mechanisms are still poorly understood, in spite of intensive research efforts. Here, we discuss the impact of Cr(VI) on the stress response-an intricate cellular system against proteotoxic stress which is increasingly viewed as playing a critical role in carcinogenesis. This discussion is preceded by information regarding applications, chemical properties and adverse health effects of Cr(VI). A summary of our current understanding of cancer initiation, promotion and progression is also provided, followed by a brief description of the stress response and its links to cancer and by an overview of potential molecular mechanisms of Cr(VI) carcinogenicity.


Asunto(s)
Carcinógenos Ambientales/farmacología , Cromo/farmacología , Estrés Fisiológico/efectos de los fármacos , Carcinógenos Ambientales/toxicidad , Transformación Celular Neoplásica/inducido químicamente , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Cromo/toxicidad , Daño del ADN , Humanos , Neoplasias/etiología , Neoplasias/metabolismo , Neoplasias/patología , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética
11.
J Neurosci ; 37(10): 2776-2794, 2017 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-28123081

RESUMEN

Transcriptional deregulation and changes in mitochondrial bioenergetics, including pyruvate dehydrogenase (PDH) dysfunction, have been described in Huntington's disease (HD). We showed previously that the histone deacetylase inhibitors (HDACIs) trichostatin A and sodium butyrate (SB) ameliorate mitochondrial function in cells expressing mutant huntingtin. In this work, we investigated the effect of HDACIs on the regulation of PDH activity in striatal cells derived from HD knock-in mice and YAC128 mice. Mutant cells exhibited decreased PDH activity and increased PDH E1alpha phosphorylation/inactivation, accompanied by enhanced protein levels of PDH kinases 1 and 3 (PDK1 and PDK3). Exposure to dichloroacetate, an inhibitor of PDKs, increased mitochondrial respiration and decreased production of reactive oxygen species in mutant cells, emphasizing PDH as an interesting therapeutic target in HD. Treatment with SB and sodium phenylbutyrate, another HDACI, recovered cell viability and overall mitochondrial metabolism in mutant cells. Exposure to SB also suppressed hypoxia-inducible factor-1 (HIF-1α) stabilization and decreased the transcription of the two most abundant PDK isoforms, PDK2 and PDK3, culminating in increased PDH activation in mutant cells. Concordantly, PDK3 knockdown improved mitochondrial function, emphasizing the role of PDK3 inactivation on the positive effects achieved by SB treatment. YAC128 mouse brain presented higher mRNA levels of PDK1-3 and PDH phosphorylation and decreased energy levels that were significantly ameliorated after SB treatment. Furthermore, enhanced motor learning and coordination were observed in SB-treated YAC128 mice. These results suggest that HDACIs, particularly SB, promote the activity of PDH in the HD brain, helping to counteract HD-related deficits in mitochondrial bioenergetics and motor function.SIGNIFICANCE STATEMENT The present work provides a better understanding of mitochondrial dysfunction in Huntington's disease (HD) by showing that the pyruvate dehydrogenase (PDH) complex is a promising therapeutic target. In particular, the histone deacetylase inhibitor sodium butyrate (SB) may indirectly (through reduced hypoxia-inducible factor 1 alpha stabilization) decrease the expression of the most abundant PDH kinase isoforms (e.g., PDK3), ameliorating PDH activity and mitochondrial metabolism and further affecting motor behavior in HD mice, thus constituting a promising agent for HD neuroprotective treatment.


Asunto(s)
Inhibidores de Histona Desacetilasas/administración & dosificación , Enfermedad de Huntington/tratamiento farmacológico , Enfermedad de Huntington/metabolismo , Neuronas/enzimología , Fármacos Neuroprotectores/administración & dosificación , Complejo Piruvato Deshidrogenasa/metabolismo , Animales , Células Cultivadas , Activación Enzimática/efectos de los fármacos , Masculino , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/enzimología , Neuronas/efectos de los fármacos , Resultado del Tratamiento
12.
Toxicol Appl Pharmacol ; 348: 1-13, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29653124

RESUMEN

Doxorubicin (DOX) is a widely used anticancer drug that could be even more effective if its clinical dosage was not limited because of delayed cardiotoxicity. Beating stem cell-derived cardiomyocytes are a preferred in vitro model to further uncover the mechanisms of DOX-induced cardiotoxicity. Our objective was to use cultured induced-pluripotent stem cell(iPSC)-derived mouse cardiomyocytes (Cor.At) to investigate the effects of DOX on cell and mitochondrial metabolism, as well as on stress responses. Non-proliferating and beating Cor.At cells were treated with 0.5 or 1 µM DOX for 24 h, and morphological, functional and biochemical changes associated with mitochondrial bioenergetics, DNA-damage response and apoptosis were measured. Both DOX concentrations decreased ATP levels and SOD2 protein levels and induced p53-dependent caspase activation. However, differential effects were observed for the two DOX concentrations. The highest concentration induced a high degree of apoptosis, with increased nuclear apoptotic morphology, PARP-1 cleavage and decrease of some OXPHOS protein subunits. At the lowest concentration, DOX increased the expression of p53 target transcripts associated with mitochondria-dependent apoptosis and decreased transcripts related with DNA-damage response and glycolysis. Interestingly, cells treated with 0.5 µM DOX presented an increase in PDK4 transcript levels, accompanied by an increase in phospho-PDH and decreased PDH activity. This was accompanied by an apparent decrease in basal and maximal oxygen consumption rates (OCR) and in basal extracellular acidification rate (ECAR). Cells pre-treated with the PDK inhibitor dichloroacetate (DCA), with the aim of restoring PDH activity, partially recovered OCR and ECAR. The results suggest that the higher DOX concentration mainly induces p53-dependent apoptosis, whereas for the lower DOX concentration the cardiotoxic effects involve bioenergetic failure, unveiling PDH as a possible therapeutic target to decrease DOX cardiotoxicity.


Asunto(s)
Antibióticos Antineoplásicos/toxicidad , Doxorrubicina/toxicidad , Metabolismo Energético/efectos de los fármacos , Cardiopatías/inducido químicamente , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Apoptosis/efectos de los fármacos , Cardiotoxicidad , Diferenciación Celular , Línea Celular , Daño del ADN , Relación Dosis-Respuesta a Droga , Cardiopatías/genética , Cardiopatías/metabolismo , Cardiopatías/patología , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Ratones , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Complejo Piruvato Deshidrogenasa/metabolismo , Superóxido Dismutasa/metabolismo , Proteína p53 Supresora de Tumor/genética
13.
Biometals ; 31(4): 477-487, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29549560

RESUMEN

Exposure to hexavalent chromium [Cr(VI)], a lung carcinogen, triggers several types of cellular stresses, namely oxidative, genotoxic and proteotoxic stresses. Given the evolutionary character of carcinogenesis, it is tempting to speculate that cells that survive the stresses produced by this carcinogen become more resistant to subsequent stresses, namely those encountered during neoplastic transformation. To test this hypothesis, we determined whether pre-incubation with Cr(VI) increased the resistance of human bronchial epithelial cells (BEAS-2B cells) to the antiproliferative action of acute thermal shock, used here as a model for stress. In line with the proposed hypothesis, it was observed that, at mildly cytotoxic concentrations, Cr(VI) attenuated the antiproliferative effects of both cold and heat shock. Mechanistically, Cr(VI) interfered with the expression of two components of the stress response pathway: heat shock proteins Hsp72 and Hsp90α. Specifically, Cr(VI) significantly depleted the mRNA levels of the former and the protein levels of the latter. Significantly, these two proteins are members of heat shock protein (Hsp) families (Hsp70 and Hsp90, respectively) that have been implicated in carcinogenesis. Thus, our results confirm and extend previous studies showing the capacity of Cr(VI) to interfere with the expression of stress response components.


Asunto(s)
Carcinógenos/toxicidad , Proliferación Celular/efectos de los fármacos , Cromo/toxicidad , Neoplasias Pulmonares/genética , Bronquios/efectos de los fármacos , Carcinogénesis/efectos de los fármacos , Carcinogénesis/genética , Carcinógenos/farmacología , Línea Celular , Cromo/farmacología , Células Epiteliales/efectos de los fármacos , Proteínas de Choque Térmico/genética , Respuesta al Choque Térmico/efectos de los fármacos , Humanos , Pulmón/efectos de los fármacos , Pulmón/patología , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/patología , Especies Reactivas de Oxígeno/química
14.
Biochim Biophys Acta Mol Basis Dis ; 1863(11): 2904-2923, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28760703

RESUMEN

Doxorubicin (DOX) is one of the most widely used anti-neoplastic agents. However, treatment with DOX is associated with cumulative cardiotoxicity inducing progressive cardiomyocyte death. Sirtuin 3 (Sirt3), a mitochondrial deacetylase, regulates the activity of proteins involved in apoptosis, autophagy and metabolism. Our hypothesis is that pharmacological modulation by berberine (BER) pre-conditioning of Sirt3 protein levels decreases DOX-induced cardiotoxicity. Our results showed that DOX induces cell death in all experimental groups. Increase in Sirt3 content by transfection-mediated overexpression decreased DOX cytotoxicity, mostly by maintaining mitochondrial network integrity and reducing oxidative stress. p53 was upregulated by DOX, and appeared to be a direct target of Sirt3, suggesting that Sirt3-mediated protection against cell death could be related to this protein. BER pre-treatment increased Sirt3 and Sirt1 protein levels in the presence of DOX and inhibited DOX-induced caspase 9 and 3-like activation. Moreover, BER modulated autophagy in DOX-treated H9c2 cardiomyoblasts. Interestingly, mitochondrial biogenesis markers were upregulated in in BER/DOX-treated cells. Sirt3 over-expression contributes to decrease DOX cytotoxicity on H9c2 cardiomyoblasts, while BER can be used as a modulator of Sirtuin function and cell quality control pathways to decrease DOX toxicity.


Asunto(s)
Berberina/farmacología , Cardiotónicos/farmacología , Doxorrubicina/efectos adversos , Mioblastos Cardíacos/enzimología , Estrés Oxidativo/efectos de los fármacos , Sirtuina 3/metabolismo , Línea Celular , Doxorrubicina/farmacología , Humanos , Proteínas Musculares/metabolismo , Mioblastos Cardíacos/patología
15.
Eur J Clin Invest ; 46(3): 285-98, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26782788

RESUMEN

BACKGROUND: The employment of dietary strategies such as ketogenic diets, which force cells to alter their energy source, has shown efficacy in the treatment of several diseases. Ketogenic diets are composed of high fat, moderate protein and low carbohydrates, which favour mitochondrial respiration rather than glycolysis for energy metabolism. DESIGN: This review focuses on how oncological, neurological and mitochondrial disorders have been targeted by ketogenic diets, their metabolic effects, and the possible mechanisms of action on mitochondrial energy homeostasis. The beneficial and adverse effects of the ketogenic diets are also highlighted. RESULTS AND CONCLUSIONS: Although the full mechanism by which ketogenic diets improve oncological and neurological conditions still remains to be elucidated, their clinical efficacy has attracted many new followers, and ketogenic diets can be a good option as a co-adjuvant therapy, depending on the situation and the extent of the disease.


Asunto(s)
Dieta Cetogénica/métodos , Epilepsia/dietoterapia , Enfermedades Mitocondriales/dietoterapia , Neoplasias/dietoterapia , Metabolismo Energético , Glucólisis , Humanos , Mitocondrias/metabolismo , Enfermedades del Sistema Nervioso/dietoterapia
16.
Biochim Biophys Acta ; 1842(12 Pt A): 2468-78, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25283819

RESUMEN

The cardiotoxicity induced by the anti-cancer doxorubicin involves increased oxidative stress, disruption of calcium homeostasis and activation of cardiomyocyte death. Nevertheless, antioxidants and caspase inhibitors often show little efficacy in preventing cell death. We hypothesize that a caspase-independent cell death mechanism with the release of the apoptosis-inducing factor from mitochondria is involved in doxorubicin toxicity. To test the hypothesis, H9c2 cardiomyoblasts were used as model for cardiac cells. Our results demonstrate that z-VAD-fmk, a pan-caspase inhibitor, does not prevent doxorubicin toxicity in this cell line. Doxorubicin treatment results in AIF translocation to the nuclei, as confirmed by Western Blotting of cell fractions and confocal microscopy. Also, doxorubicin treatment of H9c2 cardiomyoblasts resulted in the appearance of 50kbp DNA fragments, a hallmark of apoptosis-inducing factor nuclear effects. Apoptosis-inducing factor knockdown using a small-interfering RNA approach in H9c2 cells resulted in a reduction of doxorubicin toxicity, including decreased p53 activation and poly-ADP-ribose-polymerase cleavage. Among the proteases that could be responsible for apoptosis-inducing factor cleavage, doxorubicin decreased calpain activity but increased cathepsin B activation, with inhibition of the latter partly decreasing doxorubicin toxicity. Altogether, the results support that apoptosis-inducing factor release is involved in doxorubicin-induced H9c2 cell death, which explains the limited ability of caspase inhibitors to prevent toxicity.


Asunto(s)
Factor Inductor de la Apoptosis/metabolismo , Apoptosis/efectos de los fármacos , Doxorrubicina/farmacología , Miocitos Cardíacos/efectos de los fármacos , Transporte Activo de Núcleo Celular/efectos de los fármacos , Clorometilcetonas de Aminoácidos/farmacología , Animales , Antibióticos Antineoplásicos/farmacología , Apoptosis/genética , Factor Inductor de la Apoptosis/genética , Western Blotting , Inhibidores de Caspasas/farmacología , Caspasas/metabolismo , Línea Celular , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Fragmentación del ADN/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Microscopía Confocal , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Modelos Biológicos , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Interferencia de ARN , Ratas , Factores de Tiempo
17.
Eur J Clin Invest ; 45 Suppl 1: 44-9, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25524586

RESUMEN

BACKGROUND: Abnormal mitochondrial function has long been associated with the development and the progression of cancer. Multiple defects in the mitochondrial genome have been reported for various cancers, however the often disregarded mitochondrial epigenetic landscape provides an additional source of deregulation that may contribute to carcinogenesis. DESIGN: This article reviews the current understanding of mitochondrial epigenetics and how it may relate to cancer progression and development. Relevant studies were found through electronic databases (Web of Science and PubMed). RESULTS AND CONCLUSIONS: The remarkably unexplored field of mitochondrial epigenetics has the potential to shed light on several cancer-related mitochondrial abnormalities. More studies using innovative, genome-wide sequencing technologies are highly warranted to assess whether and how altered mtDNA methylation patterns affect cancer initiation and progression.


Asunto(s)
ADN Mitocondrial/genética , Epigénesis Genética , Mitocondrias/genética , Neoplasias/genética , Metilación de ADN , ADN Mitocondrial/metabolismo , Humanos , Mitocondrias/metabolismo , Neoplasias/metabolismo
18.
Cells ; 13(3)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38334639

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by the progressive loss of motor neurons, for which current treatment options are limited. Recent studies have shed light on the role of mitochondria in ALS pathogenesis, making them an attractive therapeutic intervention target. This review contains a very comprehensive critical description of the involvement of mitochondria and mitochondria-mediated mechanisms in ALS. The review covers several key areas related to mitochondria in ALS, including impaired mitochondrial function, mitochondrial bioenergetics, reactive oxygen species, metabolic processes and energy metabolism, mitochondrial dynamics, turnover, autophagy and mitophagy, impaired mitochondrial transport, and apoptosis. This review also highlights preclinical and clinical studies that have investigated various mitochondria-targeted therapies for ALS treatment. These include strategies to improve mitochondrial function, such as the use of dichloroacetate, ketogenic and high-fat diets, acetyl-carnitine, and mitochondria-targeted antioxidants. Additionally, antiapoptotic agents, like the mPTP-targeting agents minocycline and rasagiline, are discussed. The paper aims to contribute to the identification of effective mitochondria-targeted therapies for ALS treatment by synthesizing the current understanding of the role of mitochondria in ALS pathogenesis and reviewing potential convergent therapeutic interventions. The complex interplay between mitochondria and the pathogenic mechanisms of ALS holds promise for the development of novel treatment strategies to combat this devastating disease.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Humanos , Esclerosis Amiotrófica Lateral/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Mitocondrias/metabolismo , Neuronas Motoras/patología , Apoptosis
19.
Bioorg Med Chem ; 21(23): 7239-49, 2013 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-24156937

RESUMEN

Triterpenoids are a large class of naturally occurring compounds, and some potentially interesting as anticancer agents have been found to target mitochondria. The objective of the present work was to investigate the mechanisms of mitochondrial toxicity induced by novel dimethylaminopyridine (DMAP) derivatives of pentacyclic triterpenes, which were previously shown to inhibit the growth of melanoma cells in vitro. MCF-7, Hs 578T and BJ cell lines, as well as isolated hepatic mitochondria, were used to investigate direct mitochondrial effects. On isolated mitochondrial hepatic fractions, respiratory parameters, mitochondrial transmembrane electric potential, induction of the mitochondrial permeability transition (MPT) pore and ion transport-dependent osmotic swelling were measured. Our results indicate that the DMAP triterpenoid derivatives lead to fragmentation and depolarization of the mitochondrial network in situ, and to inhibition of uncoupled respiration, induction of the permeability transition pore and depolarization of isolated hepatic mitochondria. The results show that mitochondrial toxicity is an important component of the biological interaction of DMAP derivatives, which can explain the effects observed in cancer cells.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Mitocondrias Hepáticas/efectos de los fármacos , Permeabilidad/efectos de los fármacos , Triterpenos/química , Triterpenos/farmacología , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Línea Celular , Línea Celular Tumoral , Respiración de la Célula/efectos de los fármacos , Femenino , Humanos , Masculino , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Piridinas/química , Piridinas/farmacología , Ratas , Ratas Wistar
20.
Antioxidants (Basel) ; 12(5)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37237939

RESUMEN

Theragnostics is a promising approach that integrates diagnostics and therapeutics into a single personalized strategy. To conduct effective theragnostic studies, it is essential to create an in vitro environment that accurately reflects the in vivo conditions. In this review, we discuss the importance of redox homeostasis and mitochondrial function in the context of personalized theragnostic approaches. Cells have several ways to respond to metabolic stress, including changes in protein localization, density, and degradation, which can promote cell survival. However, disruption of redox homeostasis can lead to oxidative stress and cellular damage, which are implicated in various diseases. Models of oxidative stress and mitochondrial dysfunction should be developed in metabolically conditioned cells to explore the underlying mechanisms of diseases and develop new therapies. By choosing an appropriate cellular model, adjusting cell culture conditions and validating the cellular model, it is possible to identify the most promising therapeutic options and tailor treatments to individual patients. Overall, we highlight the importance of precise and individualized approaches in theragnostics and the need to develop accurate in vitro models that reflect the in vivo conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA