Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Antimicrob Agents Chemother ; 66(8): e0052122, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35852368

RESUMEN

A3IS (Mycosinate) is a synthetic product which only contains ingredients found naturally within honey. A3IS is a broad-spectrum antimicrobial product which produces a sustained release of hydrogen peroxide at low but therapeutic levels. The product elicits this release through an enzymatic reaction between glucose oxidase and the substrate glucose once the product is hydrated. As medical uses for different honeys are being re-evaluated, the purpose of this study was to evaluate the in vitro effects of A3IS against a comprehensive panel of human pathogens, including Pneumocystis species, providing a unique assessment against a panel of eukaryotic pathogens. Without exception, A3IS exhibited significant efficacy at 50% and 100% inhibitory concentrations against a broad spectrum of human pathogens including yeasts, molds (both hyaline and dematiaceous), and dimorphic fungi. Notably, A3IS was effective against fungal strains with a high level of resistance to fluconazole or voriconazole. The 50% inhibitory concentrations for Pneumocystis carinii and P. murina (surrogates for P. jirovecii) were considered "Marked" and "Moderate" on an established rank scale, and would be considered for in vivo studies, based on an established in vitro-in vivo pipeline. These results indicate that A3IS is a novel anti-fungal agent against an extensive range of human fungal pathogens.


Asunto(s)
Pneumocystis , Neumonía por Pneumocystis , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Fluconazol/farmacología , Hongos , Humanos , Pruebas de Sensibilidad Microbiana , Neumonía por Pneumocystis/tratamiento farmacológico , Voriconazol/farmacología
2.
J Infect Dis ; 224(2): 326-331, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-33245345

RESUMEN

Although atovaquone is effective in treating and preventing Pneumocystis pneumonia (PCP), its use is limited by nonlinear absorption and adverse events. The current study was undertaken to examine the activity of encochleated atovaquone (eATQ), a novel lipid-crystal nanoparticle formulation, in a mouse model of PCP. eATQ 100-200 mg was superior to commercially available atovaquone at 14 days in decreasing total Pneumocystis nuclei and asci. eATQ plus anidulafungin reduced nuclei significantly better than commercial atovaquone plus anidulafungin. eATQ is a novel formulation of atovaquone that warrants further evaluation for treatment and prevention of PCP.


Asunto(s)
Antifúngicos , Atovacuona , Neumonía por Pneumocystis , Anidulafungina/uso terapéutico , Animales , Antifúngicos/uso terapéutico , Atovacuona/uso terapéutico , Modelos Animales de Enfermedad , Ratones , Neumonía por Pneumocystis/tratamiento farmacológico , Neumonía por Pneumocystis/prevención & control
3.
Artículo en Inglés | MEDLINE | ID: mdl-33318018

RESUMEN

Antifungal prophylaxis is recommended to prevent invasive fungal disease caused by Candida spp., Aspergillus spp., and Pneumocystis jirovecii in patients at risk for opportunistic infections, such as allogeneic blood or marrow transplant recipients, patients with hematological disease undergoing chemotherapy, or patients on immunosuppressive therapies. Current approaches to antifungal prophylaxis require multiple agents to cover these key fungi. Rezafungin, a novel echinocandin designed for next-generation properties (e.g., greater stability and long-acting pharmacokinetics for once-weekly dosing), has demonstrated in vitro activity against Candida and Aspergillus spp. and efficacy against Pneumocystis spp. biofilms. Rezafungin was evaluated in in vivo studies of prophylactic efficacy using immunosuppressed mouse models of invasive candidiasis, aspergillosis, and Pneumocystis pneumonia. Rezafungin reduction of Candida CFU burden was generally greater with increasing drug concentrations (5, 10, or 20 mg/kg) and when rezafungin was administered closer to the time of fungal challenge (day -1, -3, or -5). Similarly, in the aspergillosis model, survival rates increased with drug concentrations and when rezafungin was administered closer to the time of fungal challenge. Against Pneumocystismurina, rezafungin significantly reduced trophic nuclei and asci counts at all doses tested. Rezafungin prevented infection at the two higher doses compared to vehicle and had comparable activity to the active control trimethoprim-sulfamethoxazole at human equivalent doses for prevention. These findings support phase 3 development of rezafungin and the potential for single-agent prophylaxis against invasive fungal disease caused by Candida spp., Aspergillus spp., and Pneumocystis jirovecii.


Asunto(s)
Aspergilosis , Candidiasis Invasiva , Neumonía por Pneumocystis , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Aspergilosis/tratamiento farmacológico , Candidiasis Invasiva/tratamiento farmacológico , Candidiasis Invasiva/prevención & control , Equinocandinas , Humanos , Ratones , Pruebas de Sensibilidad Microbiana , Neumonía por Pneumocystis/tratamiento farmacológico , Neumonía por Pneumocystis/prevención & control
4.
Artículo en Inglés | MEDLINE | ID: mdl-29463544

RESUMEN

The echinocandins are a class of antifungal agents that target ß-1,3-d-glucan (BG) biosynthesis. In the ascigerous Pneumocystis species, treatment with these drugs depletes the ascus life cycle stage, which contains BG, but large numbers of forms which do not express BG remain in the infected lungs. In the present study, the gene expression profiles of Pneumocystis murina were compared between infected, untreated mice and mice treated with anidulafungin for 2 weeks to understand the metabolism of the persisting forms. Almost 80 genes were significantly up- or downregulated. Like other fungi exposed to echinocandins, genes associated with sexual replication, cell wall integrity, cell cycle arrest, and stress comprised the strongest upregulated signals in P. murina from the treated mice. The upregulation of the P. murina ß-1,3-d-glucan endohydrolase and endo-1,3-glucanase was notable and may explain the disappearance of the existing asci in the lungs of treated mice since both enzymes can degrade BG. The biochemical measurement of BG in the lungs of treated mice and fluorescence microscopy with an anti-BG antibody supported the loss of BG. Downregulated signals included genes involved in cell replication, genome stability, and ribosomal biogenesis and function and the Pneumocystis-specific genes encoding the major surface glycoproteins (Msg). These studies suggest that P. murina attempted to undergo sexual replication in response to a stressed environment and was halted in any type of proliferative cycle, likely due to a lack of BG. Asci appear to be a required part of the life cycle stage of Pneumocystis, and BG may be needed to facilitate progression through the life cycle via sexual replication.


Asunto(s)
Anidulafungina/farmacología , Antifúngicos/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Pared Celular/efectos de los fármacos , Pneumocystis/efectos de los fármacos , Pneumocystis/genética , Animales , Proliferación Celular/efectos de los fármacos , Masculino , Ratones , Pneumocystis/patogenicidad , Neumonía por Pneumocystis/tratamiento farmacológico , Neumonía por Pneumocystis/microbiología , Neumonía por Pneumocystis/prevención & control
5.
Artículo en Inglés | MEDLINE | ID: mdl-30201816

RESUMEN

The impact of Pneumocystis pneumonia (PcP) on morbidity and mortality remains substantial for immunocompromised individuals, including those afflicted by HIV infection, organ transplantation, cancer, autoimmune diseases, or subject to chemotherapy or corticosteroid-based therapies. Previous work from our group has shown that repurposing antimalarial compounds for PcP holds promise for treatment of this opportunistic infection. Following our previous discovery of chloroquine analogues with dual-stage antimalarial action both in vitro and in vivo, we now report the potent action of these compounds on Pneumocystis carinii in vitro Identification of chloroquine analogues as anti-PcP leads is an unprecedented finding.


Asunto(s)
Antimaláricos/farmacología , Cloroquina/farmacología , Pneumocystis carinii/efectos de los fármacos , Neumonía por Pneumocystis/tratamiento farmacológico , Células A549 , Línea Celular Tumoral , Humanos , Huésped Inmunocomprometido/efectos de los fármacos
7.
Artículo en Inglés | MEDLINE | ID: mdl-29507066

RESUMEN

The incidence of invasive fungal infections has risen dramatically in recent decades. Current antifungal drugs are either toxic, likely to interact with other drugs, have a narrow spectrum of activity, or induce fungal resistance. Hence, there is a great need for new antifungals, possibly with novel mechanisms of action. Previously our group reported an acylhydrazone called BHBM that targeted the sphingolipid pathway and showed strong antifungal activity against several fungi. In this study, we screened 19 derivatives of BHBM. Three out of 19 derivatives were highly active against Cryptococcus neoformansin vitro and had low toxicity in mammalian cells. In particular, one of them, called D13, had a high selectivity index and showed better activity in an animal model of cryptococcosis, candidiasis, and pulmonary aspergillosis. D13 also displayed suitable pharmacokinetic properties and was able to pass through the blood-brain barrier. These results suggest that acylhydrazones are promising molecules for the research and development of new antifungal agents.


Asunto(s)
Antifúngicos/farmacología , Hidrazonas/farmacología , Esfingolípidos/biosíntesis , Animales , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/metabolismo , Candida albicans/efectos de los fármacos , Candida albicans/metabolismo , Criptococosis/metabolismo , Criptococosis/microbiología , Farmacorresistencia Fúngica , Humanos , Pruebas de Sensibilidad Microbiana
8.
J Eukaryot Microbiol ; 65(6): 934-939, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29722096

RESUMEN

The 14th International Workshops on Opportunistic Protists (IWOP-14) was held August 10-12, 2017 in Cincinnati, OH, USA. The IWOP meetings focus on opportunistic protists (OIs); for example, free-living amoebae, Pneumocystis spp., Cryptosporidium spp., Toxoplasma, the Microsporidia, and kinetoplastid flagellates. The highlights of Pneumocystis spp. research included the reports of primary homothallism for mating; a potential requirement for sexual replication in its life cycle; a new antigen on the surface of small asci; roles for CLRs, Dectin-1, and Mincle in host responses; and identification of MSG families and mechanisms used for surface variation. Studies of Cryptosporidia spp. included comparative genomics, a new cryopreservation method; the role of mucin in attachment and invasion, and epidemiological surveys illustrating species diversity in animals. One of the five identified proteins in the polar tube of Microsporidia, PTP4, was shown to play a role in host infection. Zebrafish were used as a low cost vertebrate animal model for an evaluation of potential anti-toxoplasma drugs. Folk medicine compounds with anti-toxoplasma activity were presented, and reports on the chronic toxoplasma infection provided evidence for increased tractability for the study of this difficult life cycle stage. Escape from the parasitophorus vacuole and cell cycle regulation were the topics of the study in the acute phase.


Asunto(s)
Eucariontes , Infecciones Oportunistas/parasitología , Animales , Antígenos de Protozoos , Congresos como Asunto , Cryptosporidium , Modelos Animales de Enfermedad , Eucariontes/patogenicidad , Humanos , Kinetoplastida , Lectinas Tipo C/metabolismo , Estadios del Ciclo de Vida , Microsporidios , Mucinas/metabolismo , Ohio , Infecciones Oportunistas/tratamiento farmacológico , Infecciones Oportunistas/epidemiología , Infecciones Oportunistas/inmunología , Pneumocystis , Toxoplasma/patogenicidad , Toxoplasmosis/tratamiento farmacológico , Pez Cebra
9.
Antimicrob Agents Chemother ; 60(12): 7115-7127, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27645246

RESUMEN

Only one new class of antifungal drugs has been introduced into clinical practice in the last 30 years, and thus the identification of small molecules with novel mechanisms of action is an important goal of current anti-infective research. Here, we describe the characterization of the spectrum of in vitro activity and in vivo activity of AR-12, a celecoxib derivative which has been tested in a phase I clinical trial as an anticancer agent. AR-12 inhibits fungal acetyl coenzyme A (acetyl-CoA) synthetase in vitro and is fungicidal at concentrations similar to those achieved in human plasma. AR-12 has a broad spectrum of activity, including activity against yeasts (e.g., Candida albicans, non-albicans Candida spp., Cryptococcus neoformans), molds (e.g., Fusarium, Mucor), and dimorphic fungi (Blastomyces, Histoplasma, and Coccidioides) with MICs of 2 to 4 µg/ml. AR-12 is also active against azole- and echinocandin-resistant Candida isolates, and subinhibitory AR-12 concentrations increase the susceptibility of fluconazole- and echinocandin-resistant Candida isolates. Finally, AR-12 also increases the activity of fluconazole in a murine model of cryptococcosis. Taken together, these data indicate that AR-12 represents a promising class of small molecules with broad-spectrum antifungal activity.


Asunto(s)
Antifúngicos/farmacología , Criptococosis/tratamiento farmacológico , Fluconazol/farmacología , Pirazoles/farmacología , Sulfonamidas/farmacología , Animales , Candida/efectos de los fármacos , Candida/genética , Caspofungina , Celecoxib/química , Cryptococcus neoformans/efectos de los fármacos , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos/métodos , Farmacorresistencia Fúngica/efectos de los fármacos , Sinergismo Farmacológico , Equinocandinas/farmacología , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Lipopéptidos/farmacología , Masculino , Ratones Endogámicos , Pruebas de Sensibilidad Microbiana , Pneumocystis/efectos de los fármacos , Pirazoles/química , Saccharomyces cerevisiae/efectos de los fármacos , Sulfonamidas/química
11.
Annu Rev Microbiol ; 64: 431-52, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20528694

RESUMEN

Pneumocystis species are ascomycetous fungi that obligatorily dwell with no apparent ill effect in the lungs of normal mammals, but they become pathogenic when host defenses are compromised. Identified more than 100 years ago, these atypical fungi manifest characteristics that are unique within the Fungi, such as the lack of ergosterol, genetic complexity of surface antigens, and antigenic variation. Thought to be confined to the severely immunocompromised host, Pneumocystis spp. are being associated with new population niches owing to the advent of immunomodulatory therapies and increased numbers of patients suffering from chronic diseases. The inability to grow Pneumocystis spp. outside the mammalian lung has thwarted progress toward understanding their basic biology, but via the use of new genetic tools and other strategies, researchers are beginning to uncover their biological and genetic characteristics including a biphasic life cycle, significant metabolic capacities, and modulation of lifestyles.


Asunto(s)
Pneumocystis/fisiología , Animales , Cromosomas Fúngicos , Enfermedad Crónica , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/inmunología , Orden Génico , Genes Fúngicos , Humanos , Huésped Inmunocomprometido , Factores Inmunológicos/efectos adversos , Factores Inmunológicos/uso terapéutico , Pulmón/microbiología , Mamíferos , Glicoproteínas de Membrana/biosíntesis , Glicoproteínas de Membrana/inmunología , Pneumocystis/genética , Pneumocystis/crecimiento & desarrollo , Pneumocystis/patogenicidad , Neumonía por Pneumocystis/inducido químicamente , Sintenía
12.
J Eukaryot Microbiol ; 62(5): 701-9, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25923469

RESUMEN

The 13th International Workshops on Opportunistic Protists (IWOP-13) was held November 13-15, 2014 in Seville, Spain. The objectives of the IWOP meetings are to: (1) serve as a forum for exchange of new information among active researchers concerning the basic biology, molecular genetics, immunology, biochemistry, pathogenesis, drug development, therapy, and epidemiology of these immunodeficiency-associated pathogenic eukaryotic microorganisms that are seen in patients with AIDS and; (2) to foster the entry of new and young investigators into these underserved research areas. The IWOP meeting focuses on opportunistic protists; e.g. the free-living amoebae, Pneumocystis, Cryptosporidium, Toxoplasma, the Microsporidia, and kinetoplastid flagellates. This conference represents the major conference which brings together research groups working on these opportunistic pathogens. Progress has been achieved on understanding the biology of these pathogenic organisms, their involvement in disease causation in both immune deficient and immune competent hosts and is providing important insights into these emerging and reemerging pathogens. A continuing concern of the participants is the ongoing loss of scientific expertise and diversity in this research community. This decline is due to the small size of these research communities and an ongoing lack of understanding by the broader scientific community of the challenges and limitations faced by researchers working on these organisms, which makes these research communities very sensitive to declines in research funding.


Asunto(s)
Cryptosporidium , Microsporidios , Infecciones Oportunistas , Pneumocystis , Toxoplasma , Cryptosporidium/patogenicidad , Eucariontes , Humanos , Microsporidios/patogenicidad , Infecciones Oportunistas/microbiología , Infecciones Oportunistas/parasitología , Pneumocystis/patogenicidad , Toxoplasma/patogenicidad
13.
Microbiol Spectr ; 12(2): e0365323, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38236033

RESUMEN

Pneumocystis spp. are host obligate fungal pathogens that can cause severe pneumonia in mammals and rely heavily on their host for essential nutrients. The lack of a sustainable in vitro culture system poses challenges in understanding their metabolism, and the acquisition of essential nutrients from host lungs remains unexplored. Transmission electron micrographs show that extracellular vesicles (EVs) are found near Pneumocystis spp. within the lung. We hypothesized that EVs transport essential nutrients to the fungi during infection. To investigate this, EVs from P. carinii- and P. murina-infected rodents were biochemically and functionally characterized. These EVs contained host proteins involved in cellular, metabolic, and immune processes as well as proteins with homologs found in other fungal EV proteomes, indicating that Pneumocystis may release EVs. Notably, EV uptake by P. carinii indicated their potential involvement in nutrient acquisition and a possibility for using engineered EVs for efficient therapeutic delivery. However, EVs added to P. carinii in vitro did not show increased growth or viability, implying that additional nutrients or factors are necessary to support their metabolic requirements. Exposure of macrophages to EVs increased proinflammatory cytokine levels but did not affect macrophages' ability to kill or phagocytose P. carinii. These findings provide vital insights into P. carinii and host EV interactions, yet the mechanisms underlying P. carinii's survival in the lung remain uncertain. These studies are the first to isolate, characterize, and functionally assess EVs from Pneumocystis-infected rodents, promising to enhance our understanding of host-pathogen dynamics and therapeutic potential.IMPORTANCEPneumocystis spp. are fungal pathogens that can cause severe pneumonia in mammals, relying heavily on the host for essential nutrients. The absence of an in vitro culture system poses challenges in understanding their metabolism, and the acquisition of vital nutrients from host lungs remains unexplored. Extracellular vesicles (EVs) are found near Pneumocystis spp., and it is hypothesized that these vesicles transport nutrients to the pathogenic fungi. Pneumocystis proteins within the EVs showed homology to other fungal EV proteomes, suggesting that Pneumocystis spp. release EVs. While EVs did not significantly enhance P. carinii growth in vitro, P. carinii displayed active uptake of these vesicles. Moreover, EVs induced proinflammatory cytokine production in macrophages without compromising their ability to combat P. carinii. These findings provide valuable insights into EV dynamics during host-pathogen interactions in Pneumocystis pneumonia. However, the precise underlying mechanisms remain uncertain. This research also raises the potential for engineered EVs in therapeutic applications.


Asunto(s)
Vesículas Extracelulares , Pneumocystis carinii , Pneumocystis , Neumonía por Pneumocystis , Ratas , Animales , Proteoma/metabolismo , Pneumocystis/metabolismo , Macrófagos/metabolismo , Mamíferos , Citocinas/metabolismo , Vesículas Extracelulares/metabolismo
14.
bioRxiv ; 2024 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-38405901

RESUMEN

Pneumocystis jirovecii pneumonia (PjP) poses a serious risk to individuals with compromised immune systems, such as individuals with HIV/AIDS or undergoing immunosuppressive therapies for cancer or solid organ transplants. Severe PjP triggers excessive lung inflammation, resulting in lung function decline and consequential alveolar damage, potentially culminating in acute respiratory distress syndrome. Non-HIV patients face a 30-60%mortality rate, emphasizing the need for a deeper understanding of inflammatory responses in PjP. Prior research emphasized macrophages in Pneumocystis infections, neglecting neutrophils' role in tissue damage. Consequently, the overemphasis on macrophages led to an incomplete understanding of the role of neutrophils and inflammatory responses. In the current investigation, our RNAseq studies on a murine surrogate model of PjP revealed heightened activation of the NLRP3 inflammasome and NETosis cell death pathways in their lungs. Immunofluorescence staining confirmed Neutrophil Extracellular Trap (NET) presence in the lungs of the P. murina -infected mice, validating our findings. Moreover, isolated neutrophils exhibited NETosis when directly stimulated with P. murina . While isolated NETs did not compromise P. murina viability, our data highlight the potential role of neutrophils in promoting inflammation during P. murina pneumonia through NLRP3 inflammasome assembly and NETosis. These pathways, essential for inflammation and pathogen elimination, bear the risk of uncontrolled activation leading to excessive tissue damage and persistent inflammation. This pioneering study is the first to identify the formation of NETs and inflammasomes during Pneumocystis infection, paving the way for comprehensive investigations into treatments aimed at mitigating lung damage and augmenting survival rates for individuals with PjP.

15.
Front Microbiol ; 15: 1383737, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38812685

RESUMEN

Introduction: Pneumocystis species are pathogenic fungi known to cause pneumonia in immunocompromised mammals. They are obligate to their host, replicate extracellularly in lung alveoli and thrive in the copper-enriched environment of mammalian lungs. In this study, we investigated the proteome of Pneumocystis murina, a model organism that infects mice, in the context of its copper sensing and tolerance. Methods and results: The query for copper-associated annotations in FungiDB followed by a manual curation identified only 21 genes in P. murina, significantly fewer compared to other clinically relevant fungal pathogens or phylogenetically similar free-living fungi. We then employed instrumental analyses, including Size-Exclusion Chromatography Inductively Coupled Plasma Mass Spectrometry (SEC-ICP-MS), Immobilized Metal Affinity Chromatography (IMAC), and Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS), to isolate and identify copper-binding proteins from freshly extracted organisms, revealing 29 distinct cuproproteins. The RNA sequencing (RNA-seq) analysis of P. murina exposed to various CuSO4 concentrations at three temporal intervals (0.5, 2, and 5 h) indicated that significant gene expression changes occurred only under the highest CuSO4 concentration probed (100 µM) and the longest exposure duration (5 h). This stimulus led to the upregulation of 43 genes and downregulation of 27 genes compared to untreated controls. Quantitative PCR (qPCR) confirmed the expression of four out of eight selected upregulated genes, including three assumed transcription factors (PNEG_01236, PNEG_01675, and PNEG_01730) and a putative copper transporter (PNEG_02609). Notably, the three applied methodologies - homology-based annotation, SEC-ICP-MS/IMAC/LC-MS/MS, and RNA-seq - yielded largely distinct findings, with only four genes (PNEG_02587, PNEG_03319, PNEG_02584, and PNEG_02989) identified by both instrumental methods. Discussion: The insights contribute to the broader knowledge of Pneumocystis copper homeostasis and provide novel facets of host-pathogen interactions for extracellular pathogens. We suggest that future studies of Pneumocystis pathogenicity and copper stress survival should consider the entire spectrum of identified genes.

16.
mBio ; 15(3): e0318523, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38380929

RESUMEN

Centromeres are constricted chromosomal regions that are essential for cell division. In eukaryotes, centromeres display a remarkable architectural and genetic diversity. The basis of centromere-accelerated evolution remains elusive. Here, we focused on Pneumocystis species, a group of mammalian-specific fungal pathogens that form a sister taxon with that of the Schizosaccharomyces pombe, an important genetic model for centromere biology research. Methods allowing reliable continuous culture of Pneumocystis species do not currently exist, precluding genetic manipulation. CENP-A, a variant of histone H3, is the epigenetic marker that defines centromeres in most eukaryotes. Using heterologous complementation, we show that the Pneumocystis CENP-A ortholog is functionally equivalent to CENP-ACnp1 of S. pombe. Using organisms from a short-term in vitro culture or infected animal models and chromatin immunoprecipitation (ChIP)-Seq, we identified CENP-A bound regions in two Pneumocystis species that diverged ~35 million years ago. Each species has a unique short regional centromere (<10 kb) flanked by heterochromatin in 16-17 monocentric chromosomes. They span active genes and lack conserved DNA sequence motifs and repeats. These features suggest an epigenetic specification of centromere function. Analysis of centromeric DNA across multiple Pneumocystis species suggests a vertical transmission at least 100 million years ago. The common ancestry of Pneumocystis and S. pombe centromeres is untraceable at the DNA level, but the overall architectural similarity could be the result of functional constraint for successful chromosomal segregation.IMPORTANCEPneumocystis species offer a suitable genetic system to study centromere evolution in pathogens because of their phylogenetic proximity with the non-pathogenic yeast S. pombe, a popular model for cell biology. We used this system to explore how centromeres have evolved after the divergence of the two clades ~ 460 million years ago. To address this question, we established a protocol combining short-term culture and ChIP-Seq to characterize centromeres in multiple Pneumocystis species. We show that Pneumocystis have short epigenetic centromeres that function differently from those in S. pombe.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Proteína A Centromérica/genética , Filogenia , Proteínas Cromosómicas no Histona/genética , Centrómero/metabolismo , Schizosaccharomyces/genética , ADN/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Saccharomyces cerevisiae/genética
17.
Infect Immun ; 81(3): 984-95, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23319554

RESUMEN

Pneumocystis spp. are yeast-like fungi that cause pneumocystis pneumonia (PcP) in immunocompromised individuals and exacerbate chronic lung diseases in immunocompetent individuals. The Pneumocystis life cycle includes trophic forms and asci (cyst forms). The cell walls of Pneumocystis asci contain ß-1,3-D-glucan, and treatment of PcP with ß-1,3-D-glucan synthase inhibitors, such as anidulafungin, results in depletion of asci, but not trophic forms. The pulmonary host response during immune reconstitution (IR)-mediated clearance of PcP in anidulafungin-treated and untreated mice was characterized to identify ascus-specific responses. During IR, similar numbers of trophic forms were present in the anidulafungin-treated and untreated mice; however, asci were only present in the untreated mice. IR resulted in a significant reduction of trophic forms from the lungs in both groups and asci in the untreated group. The presence of asci in untreated mice correlated with increased ß-glucan content in the lungs. The untreated mice mounted immune responses associated with a deleterious host inflammatory response, including increased CD8(+) T cell influx and expression of macrophage inflammatory response markers. A more robust cellular response was also observed in the untreated mice, with increased numbers of macrophages and neutrophils that were associated with greater lung damage. Markers of a Th17 response were also elevated in the untreated mice. These results suggest that the host mounts unique responses to asci and trophic forms. That these 2 life cycle stages provoked distinct host response profiles has significant implications for clearance and interpretation of the host immune responses to PcP.


Asunto(s)
Pneumocystis/clasificación , Pneumocystis/inmunología , Neumonía por Pneumocystis/inmunología , Neumonía por Pneumocystis/microbiología , Albúminas/metabolismo , Anidulafungina , Animales , Antifúngicos/uso terapéutico , Líquido del Lavado Bronquioalveolar/citología , Pared Celular/química , Pared Celular/metabolismo , Equinocandinas/uso terapéutico , Femenino , Citometría de Flujo , Inflamación/metabolismo , Pulmón/citología , Ratones , Ratones Endogámicos C3H , Neumonía por Pneumocystis/tratamiento farmacológico , Neumonía por Pneumocystis/patología
19.
J Eukaryot Microbiol ; 60(3): 298-308, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23560871

RESUMEN

The 12th International Workshops on Opportunistic Protists (IWOP-12) was held in August 2012 in Tarrytown, New York. The objectives of the IWOP meetings are to: (1) serve as a forum for exchange of new information among active researchers concerning the basic biology, molecular genetics, immunology, biochemistry, pathogenesis, drug development, therapy, and epidemiology of these immunodeficiency-associated pathogenic eukaryotic microorganisms that are seen in patients with AIDS and (2) foster the entry of new and young investigators into these underserved research areas. The IWOP meeting focuses on opportunistic protists, e.g. the free-living amoebae, Pneumocystis, Cryptosporidium, Toxoplasma, the Microsporidia, and kinetoplastid flagellates. This conference represents the major conference that brings together research groups working on these opportunistic pathogens. Slow but steady progress is being achieved on understanding the biology of these pathogenic organisms, their involvement in disease causation in both immune-deficient and immune-competent hosts, and is providing critical insights into these emerging and reemerging pathogens. This IWOP meeting demonstrated the importance of newly developed genomic level information for many of these pathogens and how analysis of such large data sets is providing key insights into the basic biology of these organisms. A great concern is the loss of scientific expertise and diversity in the research community due to the ongoing decline in research funding. This loss of researchers is due to the small size of many of these research communities and a lack of appreciation by the larger scientific community concerning the state of art and challenges faced by researchers working on these organisms.


Asunto(s)
Eucariontes , Acanthamoeba , Animales , Blastocystis , Congresos como Asunto , Cryptosporidium , Giardia , Microsporidios , Pneumocystis , Toxoplasma
20.
bioRxiv ; 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37786700

RESUMEN

Pneumocystis spp. are host obligate fungal pathogens that can cause severe pneumonia in mammals and rely heavily on their host for essential nutrients. The lack of a sustainable in vitro culture system poses challenges in understanding their metabolism and the acquisition of essential nutrients from host lungs remains unexplored. Transmission electron micrographs show Extracellular Vesicles (EVs) are found near Pneumocystis spp. within the lung. We hypothesized that EVs transport essential nutrients to the fungi during infection. To investigate this, EVs from P. carinii and P. murina infected rodents were biochemically and functionally characterized. These EVs contained host proteins involved in cellular, metabolic, and immune processes as well as proteins with homologs found in other fungal EV proteomes, indicating Pneumocystis may release EVs. Notably, EV uptake by P. carinii indicated their potential involvement in nutrient acquisition and indicate a possibility for using engineered EVs for efficient therapeutic delivery. However, EVs added to P. carinii in vitro , did not show increased growth or viability, implying that additional nutrients or factors are necessary to support their metabolic requirements. Exposure of macrophages to EVs increased proinflammatory cytokine levels, but did not affect macrophages' ability to kill or phagocytose P. carinii . These findings provide vital insights into P. carinii and host EV interactions, yet the mechanisms underlying P. carinii 's survival in the lung remain uncertain. These studies are the first to isolate, characterize, and functionally assess EVs from Pneumocystis -infected rodents, promising to enhance our understanding of host-pathogen dynamics and therapeutic potential.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA