Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Eur J Clin Invest ; 54(5): e14172, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38293760

RESUMEN

BACKGROUND: Glucocorticoid (GR) and mineralocorticoid (MR) receptors are highly expressed in cardiac tissue, and both can be activated by corticosteroids. MR activation, in acute myocardial infarction (AMI), worsens cardiac function, and increase NHE activity contributing to the deleterious process. In contrast, effects of GR activation are not fully understood, probably because of the controversial scenario generated by using different doses or potencies of corticosteroids. AIMS: We tested the hypothesis that an acute dose of hydrocortisone (HC), a low-potency glucocorticoid, in a murine model of AMI could be cardioprotective by regulating NHE1 activity, leading to a decrease in oxidative stress. MATERIALS AND METHODS: Isolated hearts from Wistar rats were subjected to regional ischemic protocol. HC (10 nmol/L) was added to the perfusate during early reperfusion. Infarct size and oxidative stress were determined. Isolated papillary muscles from non-infarcted hearts were used to evaluate HC effect on sodium-proton exchanger 1 (NHE1) by analysing intracellular pH recovery from acute transient acidosis. RESULTS: HC treatment decreased infarct size, improved cardiac mechanics, reduced oxidative stress after AMI, while restoring the decreased level of the pro-fusion mitochondrial protein MFN-2. Co-treatment with the GR-blocker Mifepristone avoided these effects. HC reduced NHE1 activity by increasing the NHE1 pro-inhibiting Ser648 phosphorylation site and its upstream kinase AKT. HC restored the decreased AKT phosphorylation and anti-apoptotic BCL-2 protein expression detected after AMI. CONCLUSIONS: Our results provide the first evidence that acute HC treatment during early reperfusion induces cardioprotection against AMI, associated with a non-genomic HC-triggered NHE1 inhibition by AKT and antioxidant action that might involves mitochondrial dynamics improvement.


Asunto(s)
Infarto del Miocardio , Daño por Reperfusión , Ratas , Ratones , Animales , Miocardio/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Hidrocortisona/farmacología , Hidrocortisona/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Glucocorticoides/farmacología , Glucocorticoides/metabolismo , Ratas Wistar , Intercambiadores de Sodio-Hidrógeno , Infarto del Miocardio/prevención & control , Infarto del Miocardio/metabolismo , Daño por Reperfusión/metabolismo
2.
Cell Physiol Biochem ; 52(2): 172-185, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30816666

RESUMEN

BACKGROUND/AIMS: Myocardial stretch increases cardiac force in two consecutive phases: The first one due to Frank-Starling mechanism, followed by the gradually developed slow force response (SFR). The latter is the mechanical counterpart of an autocrine/paracrine mechanism involving the release of angiotensin II (Ang II) and endothelin (ET) leading to Na⁺/H⁺ exchanger 1 (NHE-1) phosphorylation and activation. Since previous evidence indicates that p38-MAP kinase (p38-MAPK) negatively regulates the Ang II-induced NHE1 activation in vascular smooth muscle and the positive inotropic effect of ET in the heart, we hypothesized that this kinase might modulate the magnitude of the SFR to stretch. METHODS: Experiments were performed in isolated rat papillary muscles subjected to sudden stretch from 92 to 98% of its maximal length, in the absence or presence of the p38-MAPK inhibitor SB202190, or its inactive analogous SB202474. Western blot technique was used to determine phosphorylation level of p38-MAPK, ERK1/2, p90RSK and NHE-1 (previously immunoprecipitated with NHE-1 polyclonal antibody). Dual specificity phosphatase 6 (DUSP6) expression was evaluated by RT-PCR and western blot. Additionally, the Na⁺-dependent intracellular pH recovery from an ammonium prepulse-induced acid load was used to asses NHE-1 activity. RESULTS: The SFR was larger under p38-MAPK inhibition (SB202190), effect that was not observed in the presence of an inactive analogous (SB202474). Myocardial stretch activated p38-MAPK, while pre-treatment with SB202190 precluded this effect. Inhibition of p38-MAPK increased stretched-induced NHE-1 phosphorylation and activity, key event in the SFR development. Consistently, p38-MAPK inhibition promoted a greater increase in ERK1/2-p90RSK phosphorylation/activation after myocardial stretch, effect that may certainly be responsible for the observed increase in NHE-1 phosphorylation under this condition. Myocardial stretch induced up-regulation of the DUSP6, which specifically dephosphorylates ERK1/2, effect that was blunted by SB202190. CONCLUSION: Taken together, our data support the notion that p38-MAPK activation after myocardial stretch restricts the SFR by limiting ERK1/2-p90RSK phosphorylation, and consequently NHE-1 phosphorylation/activity, through a mechanism that involves DUSP6 up-regulation.


Asunto(s)
Fosfatasa 6 de Especificidad Dual/biosíntesis , Regulación Enzimológica de la Expresión Génica , Sistema de Señalización de MAP Quinasas , Contracción Miocárdica , Miocardio/enzimología , Regulación hacia Arriba , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Imidazoles/farmacología , Fosforilación/efectos de los fármacos , Piridinas/farmacología , Ratas , Ratas Wistar , Intercambiador 1 de Sodio-Hidrógeno/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores
3.
Am J Physiol Heart Circ Physiol ; 305(2): H228-37, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23709596

RESUMEN

Myocardial stretch is an established signal that leads to hypertrophy. Myocardial stretch induces a first immediate force increase followed by a slow force response (SFR), which is a consequence of an increased Ca(2+) transient that follows the NHE1 Na(+)/H(+) exchanger activation. Carbonic anhydrase II (CAII) binds to the extreme COOH terminus of NHE1 and regulates its transport activity. We aimed to test the role of CAII bound to NHE1 in the SFR. The SFR and changes in intracellular pH (pHi) were evaluated in rat papillary muscle bathed with CO2/HCO3(-) buffer and stretched from 92% to 98% of the muscle maximal force development length for 10 min in the presence of the CA inhibitor 6-ethoxzolamide (ETZ, 100 µM). SFR control was 120 ± 3% (n = 8) of the rapid initial phase and was fully blocked by ETZ (99 ± 4%, n = 6). The SFR corresponded to a maximal increase in pHi of 0.18 ± 0.02 pH units (n = 4), and pHi changes were blocked by ETZ (0.04 ± 0.04, n = 6), as monitored by epifluorescence. NHE1/CAII physical association was examined in the SFR by coimmunoprecipitation, using muscle lysates. CAII immunoprecipitated with an anti-NHE1 antibody and the CAII immunoprecipitated protein levels increased 58 ± 9% (n = 6) upon stretch of muscles, assessed by immunoblots. The p90(RSK) kinase inhibitor SL0101-1 (10 µM) blocked the SFR of heart muscles after stretch 102 ± 2% (n = 4) and reduced the binding of CAII to NHE1, suggesting that the stretch-induced phosphorylation of NHE1 increases its binding to CAII. CAII/NHE1 interaction constitutes a component of the SFR to heart muscle stretch, which potentiates NHE1-mediated H(+) transport in the myocardium.


Asunto(s)
Anhidrasa Carbónica II/antagonistas & inhibidores , Inhibidores de Anhidrasa Carbónica/farmacología , Etoxzolamida/farmacología , Husos Musculares/metabolismo , Músculos Papilares/efectos de los fármacos , Intercambiadores de Sodio-Hidrógeno/metabolismo , Animales , Anhidrasa Carbónica II/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Concentración de Iones de Hidrógeno , Inmunoprecipitación , Mediciones Luminiscentes , Masculino , Músculos Papilares/enzimología , Fosforilación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas/métodos , Inhibidores de Proteínas Quinasas/farmacología , Ratas , Ratas Wistar , Proteínas Quinasas S6 Ribosómicas 90-kDa/antagonistas & inhibidores , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Intercambiador 1 de Sodio-Hidrógeno , Factores de Tiempo
4.
Artículo en Inglés | MEDLINE | ID: mdl-37878045

RESUMEN

Nebivolol could prevent dysfunction in patients suffering myocardial ischemia. However, influence of hyperthyroidism is not known. Consequences and mechanisms of nebivolol treatment were investigated in isolated hearts from euthyroid (EuT) and hyperthyroid (HpT) rats. Rats were orally treated during 1 week with 20 mg/kg/day nebivolol (O-Neb), 30 mg/kg/day atenolol (O-Ate), or not treated (C). Isolated perfused hearts were exposed to global ischemia and reperfusion (I/R) inside a flow calorimeter. Left diastolic ventricular pressure, developed contractile pressure (P), and total heat rate (Ht) were continuously measured, while infarct size was measured after 2-h R. EuT-C and HpT-C hearts developed similarly low post-ischemic contractile recovery and economy (P/Ht). Nebivolol totally prevented dysfunction and reduced infarction size in EuT hearts, but partially improved recovery in HpT rat hearts. Contrarily, oral atenolol totally prevented dysfunction in HpT hearts but partially in EuT hearts. Nebivolol effects were reversed by perfusing L-NAME in both conditions, but partially reduced by aminoguanidine in HpT. However, L-NAME increased P and P/Ht recoveries in EuT-C and HpT-C rat hearts, as well as melatonin. Oral nebivolol prevented post-ischemic dysfunction and infarction in EuT hearts due to adrenergic ß1 blockade and activation of iNOS and/or eNOS, but the effect was attenuated in HpT hearts by excessive iNOS-dependent nitrosative pathways.

5.
Biochim Biophys Acta Gen Subj ; 1866(5): 130098, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35104623

RESUMEN

Our objective was to examine the effects of N-methylacetazolamide (NMA), a non­carbonic anhydrase inhibitor, on ischemia-reperfusion injury. Isolated rat hearts were assigned to the following groups: 1) Non-ischemic control (NIC):110 min of perfusion and 2) Ischemic control (IC): 30 min of global ischemia and 60 min of reperfusion (R). Both groups were repeated in presence of NMA (5 µM), administered during the first 10 min of R. Infarct size (IS) was measured by TTC staining. Developed pressure (LVDP) and end-diastolic pressure (LVEDP) of the left ventricle were used to assess systolic and diastolic function, respectively. The content of P-Akt, P-PKCε, P-Drp1 and calcineurin Aß were measured. In cardiomyocytes the L-type Ca2+ current (ICaL) was recorded with the whole-cell configuration of patch-clamp technique. The addition of NMA to non-ischemic hearts decreased 15% the contractility. In ischemic hearts (IC group), NMA decreased IS (22 ± 2% vs 32 ± 2%, p < 0.05) and improved the post-ischemic recovery of myocardial function. At the end of R, LVDP was 54 ± 7% vs 18 ± 3% and LVEDP was 23 ± 8 vs. 55 ± 7 mmHg ¨p < 0.05¨. The level of P-Akt, P-PKCε and P-Drp1 increased and the expression of calcineurin Aß decreased in NMA treated hearts. Peak ICaL density recorded at 0 mV was smaller in myocytes treated with NMA than in non-treated cells (-1.91 ± 0.15 pA/pF vs -2.32 ± 0.17 pA/pF, p < 0.05). These data suggest that NMA protects the myocardium against ischemia-reperfusion injury through an attenuation of mitochondrial fission by calcineurin/Akt/PKCε-dependent pathways associated to the decrease of ICaL current.


Asunto(s)
Bloqueadores de los Canales de Calcio , Cardiotónicos , Metazolamida , Daño por Reperfusión Miocárdica , Animales , Calcineurina , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo L/metabolismo , Cardiotónicos/farmacología , Metazolamida/farmacología , Daño por Reperfusión Miocárdica/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas
6.
J Physiol ; 589(Pt 24): 6051-61, 2011 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-22174146

RESUMEN

The increase in myocardial reactive oxygen species after epidermal growth factor receptor transactivation is a crucial step in the autocrine/paracrine angiotensin II/endothelin receptor activation leading to the slow force response to stretch (SFR). Since experimental evidence suggests a link between angiotensin II or its AT1 receptor and the mineralocorticoid receptor (MR), and MR transactivates the epidermal growth factor receptor, we thought to determine whether MR activation participates in the SFR development in rat myocardium. We show here that MR activation is necessary to promote reactive oxygen species formation by a physiological concentration of angiotensin II (1 nmol l(-1)), since an increase in superoxide anion formation of ~50% of basal was suppressed by blocking MR with spironolactone or eplerenone. This effect was also suppressed by blocking AT1, endothelin (type A) or epidermal growth factor receptors, by inhibiting NADPH oxydase or by targeting mitochondria, and was unaffected by glucocorticoid receptor inhibition. All interventions except AT1 receptor blockade blunted the increase in superoxide anion promoted by an equipotent dose of endothelin-1 (1 nmol l(-1)) confirming that endothelin receptors activation is downstream of AT1. Similarly, an increase in superoxide anion promoted by an equipotent dose of aldosterone (10 nmol l(-1)) was blocked by spironolactone or eplerenone, by preventing epidermal growth factor receptor transactivation, but not by inhibiting glucocorticoid receptors or protein synthesis, suggesting non-genomic MR effects. Combination of aldosterone plus endothelin-1 did not increase superoxide anion formation more than each agonist separately. We found that aldosterone increased phosphorylation of the redox-sensitive kinases ERK1/2-p90RSK and the NHE-1, effects that were eliminated by eplerenone or by preventing epidermal growth factor receptor transactivation. Finally, we provide evidence that the SFR is suppressed by MR blockade, by preventing epidermal growth factor receptor transactivation or by scavenging reactive oxygen species, but it is unaffected by glucocorticoid receptor blockade or protein synthesis inhibition. Our results suggest that MR activation is a necessary step in the stretch-triggered reactive oxygen species-mediated activation of redox-sensitive kinases upstream NHE-1.


Asunto(s)
Corazón/fisiología , Músculo Liso/fisiología , Contracción Miocárdica/fisiología , Receptores de Mineralocorticoides/fisiología , Aldosterona/farmacología , Angiotensina II/metabolismo , Animales , Endotelina-1/farmacología , Receptores ErbB/metabolismo , Técnicas In Vitro , Masculino , Mitocondrias Cardíacas/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Músculos Papilares/fisiología , Ratas , Ratas Wistar , Receptores de Endotelina/metabolismo , Receptores de Mineralocorticoides/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Transducción de Señal , Intercambiadores de Sodio-Hidrógeno/metabolismo , Estrés Mecánico , Superóxidos/metabolismo
7.
Front Cardiovasc Med ; 8: 617519, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33693035

RESUMEN

The cardiac Na+/H+ exchanger (NHE1) is a membrane glycoprotein fundamental for proper cell functioning due its multiple housekeeping tasks, including regulation of intracellular pH, Na+ concentration, and cell volume. In the heart, hyperactivation of NHE1 has been linked to the development of different pathologies. Several studies in animal models that reproduce the deleterious effects of ischemia/reperfusion injury or cardiac hypertrophy have conclusively demonstrated that NHE1 inhibition provides cardioprotection. Unfortunately, NHE1 inhibitors failed to reproduce these effects in the clinical arena. The reasons for those discrepancies are not apparent yet. However, a reasonable clue to consider would be that drugs that completely abolish the exchanger activity, including that its essential housekeeping function may not be the best therapeutic approach. Therefore, interventions tending to specifically reduce its hyperactive state without affecting its basal activity emerge as a novel potential gold standard. In this regard, a promising goal seems to be the modulation of the phosphorylation state of the cytosolic tail of the exchanger. Recent own experiments demonstrated that Sildenafil, a phosphodiesterase 5A inhibitor drug that has been widely used for the treatment of erectile dysfunction is able to decrease NHE1 phosphorylation, and hence reduce its hyperactivity. In connection, growing evidence demonstrates cardioprotective properties of Sildenafil against different cardiac pathologies, with the distinctive characteristic of directly affecting cardiac tissue without altering blood pressure. This mini-review was aimed to focus on the regulation of NHE1 activity by Sildenafil. For this purpose, experimental data reporting Sildenafil effects in different animal models of heart disease will be discussed.

8.
Front Cardiovasc Med ; 8: 622583, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33718450

RESUMEN

The stretch of cardiac muscle increases developed force in two phases. The first phase occurs immediately after stretch and is the expression of the Frank-Starling mechanism, while the second one or slow force response (SFR) occurs gradually and is due to an increase in the calcium transient amplitude. An important step in the chain of events leading to the SFR generation is the increased production of reactive oxygen species (ROS) leading to redox sensitive ERK1/2, p90RSK, and NHE1 phosphorylation/activation. Conversely, suppression of ROS production blunts the SFR. The purpose of this study was to explore whether overexpression of the ubiquitously expressed antioxidant molecule thioredoxin-1 (TRX1) affects the SFR development and NHE1 phosphorylation. We did not detect any change in basal phopho-ERK1/2, phopho-p90RSK, and NHE1 expression in mice with TRX1 overexpression compared to wild type (WT). Isolated papillary muscles from WT or TRX1-overexpressing mice were stretched from 92 to 98% of its maximal length. A prominent SFR was observed in WT mice that was completely canceled in TRX1 animals. Interestingly, myocardial stretch induced a significant increase in NHE1 phosphorylation in WT mice that was not detected in TRX1-overexpressing mice. These novel results suggest that magnification of cardiac antioxidant defense power by overexpression of TRX1 precludes NHE1 phosphorylation/activation after stretch, consequently blunting the SFR development.

9.
Eur J Pharmacol ; 891: 173724, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33152335

RESUMEN

Previously, we have shown that an increased cGMP-activated protein Kinase (PKG) activity after phosphodiesterase 5 (PDE5) inhibition by Sildenafil (SIL), leads to myocardial Na+/H+ exchanger (NHE1) inhibition preserving its basal homeostatic function. Since NHE1 is hyperactive in the hypertrophied myocardium of spontaneous hypertensive rats (SHR), while its inhibition was shown to prevent and revert this pathology, the current study was aimed to evaluate the potential antihypertrophic effect of SIL on adult SHR myocardium. We initially tested the inhibitory capability of SIL on NHE1 in isolated cardiomyocytes of SHR by comparing H+ efflux during the recovery from an acid load. After confirmed that effect, eight-month-old SHR were chronically treated for one month with SIL through drinking water. Compared to their littermate controls, SIL-treated rats presented a decreased NHE1 activity, which correlated with a reduction in its phosphorylation level assigned to activation of a PKG-p38 MAP kinase-PP2A signaling pathway. Moreover, treated animals showed a decreased oxidative stress that appears to be a consequence of a decreased mitochondrial NHE1 phosphorylation. Treated SHR showed a significant reduction in the pro-hypertrophic phosphatase calcineurin, despite slight tendency to decrease hypertrophy was detected. When SIL treatment was prolonged to three months, a significant decrease in myocardial hypertrophy and interstitial fibrosis that correlated with a lower myocardial stiffness was observed. In conclusion, the current study provides evidence concerning the ability of SIL to revert established cardiac hypertrophy in SHR, a clinically relevant animal model that resembles human essential hypertension.


Asunto(s)
Cardiomegalia/prevención & control , Miocitos Cardíacos/efectos de los fármacos , Músculos Papilares/efectos de los fármacos , Inhibidores de Fosfodiesterasa 5/farmacología , Citrato de Sildenafil/farmacología , Intercambiador 1 de Sodio-Hidrógeno/metabolismo , Animales , Cardiomegalia/enzimología , Cardiomegalia/etiología , Cardiomegalia/fisiopatología , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Regulación hacia Abajo , Fibrosis , Hipertensión/complicaciones , Masculino , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/patología , Músculos Papilares/enzimología , Músculos Papilares/fisiopatología , Fosforilación , Proteína Fosfatasa 2/metabolismo , Ratas Endogámicas SHR , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
10.
Cell Physiol Biochem ; 26(4-5): 531-40, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21063091

RESUMEN

BACKGROUND/AIMS: This study aimed to identify the signaling pathway for the proposed link between phosphodiesterase-5A (PDE5A) inhibition and decreased cardiac Na(+)/H(+) exchanger (NHE-1) activity. METHODS: NHE-1 activity was assessed in rat isolated papillary muscles by the Na(+)-dependent initial pH(i) recovery from a sustained acidosis (ammonium prepulse). ERK1/2, p90RSK and NHE-1 phosphorylation state during acidosis was determined. RESULTS: PDE5A inhibition (1 µmol/L sildenafil, SIL) did not modify basal pH(i) but significantly blunted pH(i) recovery after sustained acidosis. Although preventing ERK1/2- p90RSK signaling pathway (10 µmol/L U0126) mimicked SIL effect, SIL did not blunt the acidosis-mediated increase in kinases activation. SIL+U0126 did not show additive effect on NHE-1 activity. Then, we hypothesized that SIL could be activating phophasatases (PP1 and/or PP2A) to directly dephosphorylate NHE-1 despite preserved ERK1/2-p90RSK activation. Non-specific phosphatases inhibition (1 µmol/L okadaic acid) canceled SIL effect on pH(i) recovery from acidosis. Same result was observed by inhibiting PP2A either with a lower dose of okadaic acid (1 nmol/L) or, more specifically, with 100 µmol/L endothall. Consistently, NHE-1 phosphorylation at Ser703 increased after acidosis, SIL prevented this effect and PP2A inhibition (endothall) reverted SIL effect. CONCLUSION: We suggest that PDE5A inhibitors decrease NHE-1 phosphorylation and activity through a mechanism that involves PP2A activation.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/metabolismo , Inhibidores de Fosfodiesterasa/farmacología , Proteína Fosfatasa 1/fisiología , Proteína Fosfatasa 2/fisiología , Intercambiadores de Sodio-Hidrógeno/metabolismo , Acidosis/tratamiento farmacológico , Animales , Butadienos/farmacología , Ácidos Dicarboxílicos/farmacología , Concentración de Iones de Hidrógeno , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Nitrilos/farmacología , Ácido Ocadaico/farmacología , Músculos Papilares/efectos de los fármacos , Músculos Papilares/metabolismo , Fosforilación , Piperazinas/farmacología , Proteína Fosfatasa 1/antagonistas & inhibidores , Proteína Fosfatasa 1/metabolismo , Proteína Fosfatasa 2/antagonistas & inhibidores , Proteína Fosfatasa 2/metabolismo , Purinas/farmacología , Ratas , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Citrato de Sildenafil , Sulfonas/farmacología
11.
Eur J Pharmacol ; 849: 96-105, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30721701

RESUMEN

Since the original description as potent antianginal compounds, phosphodiesterase 5A inhibitors have continuously increased their possible therapeutic applications. In the heart, Sildenafil was shown to protect against an ischemic insult by decreasing cardiac Na+/H+ exchanger (NHE1) activity, action that was mediated by protein kinase G. p38 mitogen activated protein kinase (p38MAPK) activation was described in cardiac ischemia, but its precise role remains elusive. It has been shown that p38MAPK is activated by protein kinase G (PKG) in certain non-cardiac tissues, while in others modulates NHE1 activity. Current study was aimed to seek the role of p38MAPK in the Sildenafil-triggered pathway leading to NHE1 inhibition in myocardium. Rat isolated papillary muscles were used to evaluate NHE1 activity during intracellular pH recovery from an acidic load. Protein kinases phosphorylation (activation) was determined by western blot. Sustained acidosis promoted NHE1 hyperactivity by enhancing Ser703 phosphorylation, effect that was blunted by Sildenafil. p38MAPK inhibition reversed the effect of Sildenafil on NHE1. Activation of p38MAPK, by Sodium Arsenite or Anisomycin, mimicked the inhibitory effect of Sildenafil on the exchanger. Consistently, Sildenafil induced p38MAPK phosphorylation/activation during acidosis. Neither Sildenafil nor p38MAPK inhibition affected extracellular signal-regulated kinases 1/2 phosphorylation, kinases upstream NHE1. Furthermore, inhibition of NHE1 after p38MAPK activation was precluded by preventing the activation of protein phosphatase 2A with Okadaic Acid. Taken together, these results suggest that activation of p38MAPK is a necessary step to trigger the inhibitory effect of Sildenafil on cardiac NHE1 activity, thorough a mechanism that involves protein phosphatase 2A-mediated exchanger dephosphorylation.


Asunto(s)
Corazón/efectos de los fármacos , Miocardio/metabolismo , Citrato de Sildenafil/farmacología , Intercambiadores de Sodio-Hidrógeno/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Acidosis/enzimología , Acidosis/metabolismo , Acidosis/patología , Animales , Activación Enzimática/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Miocardio/citología , Miocardio/patología , Fosforilación/efectos de los fármacos , Proteína Fosfatasa 2/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Wistar , Intercambiador 1 de Sodio-Hidrógeno/metabolismo
12.
Biochem Pharmacol ; 170: 113667, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31622577

RESUMEN

Pathological cardiac hypertrophy (PCH) can be triggered by epidermal growth factor receptor (EGFR) transactivation. Progression of PCH can be prevented by inhibition of hyperactive Na+/H+ exchanger isoform 1 (NHE1). We first aimed, to limit PCH of spontaneously hypertensive rats (SHR) by specific and localized silencing of cardiac EGFR, and second to study the connection of its activation pathway with cardiac NHE1 activity. Short hairpin RNA (shRNA) against EGFR was delivered with a lentivirus (l-shEGFR) in the cardiac left ventricle (LV) wall. Protein expression was analyzed by immunoblots, and NHE1 activity was indirectly measured in isolated papillary muscles by rate of pHi recovery from transient acidification. EGFR protein expression in the LV was reduced compared to the group injected with l-shSCR (Scrambled sequence) without changes in ErbB2 or ErbB4. Hypertrophic parameters together with cardiomyocytes cross sectional area were reduced in animals injected with l-shEGFR. Echocardiographic analysis exhibited a reduced fractional shortening in the l-shSCR group 30 days following treatment that was not observed in l-shEGFR group. l-shEGFR treated rats presented a reduced basal production of reactive oxygen species and decreased lipid peroxidation. NHE1 activity was significantly diminished in hearts with a partial EGFR silencing, without modification of its protein expression. We conclude that specifically silencing cardiac EGFR expression prevents progression of PCH through a pathway that involves a decrease in the NHE1 activity. Lentiviral vectors prove to be a valuable tool for long term expression of shRNA, bringing the possibility to extend its use in clinical area.


Asunto(s)
Cardiomegalia/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Silenciador del Gen/fisiología , Intercambiador 1 de Sodio-Hidrógeno/metabolismo , Animales , Cardiomegalia/patología , Receptores ErbB/antagonistas & inhibidores , Células HEK293 , Humanos , Masculino , Ratas , Ratas Endogámicas SHR , Intercambiador 1 de Sodio-Hidrógeno/antagonistas & inhibidores
13.
J Appl Physiol (1985) ; 125(2): 340-352, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29357509

RESUMEN

During ischemia, increased anaerobic glycolysis results in intracellular acidosis. Activation of alkalinizing transport mechanisms associated with carbonic anhydrases (CAs) leads to myocardial intracellular Ca2+ increase. We characterize the effects of inhibition of CA with benzolamide (BZ) during cardiac ischemia-reperfusion (I/R). Langendorff-perfused isolated rat hearts were subjected to 30 min of global ischemia and 60 min of reperfusion. Other hearts were treated with BZ (5 µM) during the initial 10 min of reperfusion or perfused with acid solution (AR, pH 6.4) during the first 3 min of reperfusion. p38MAPK, a kinase linked to membrane transporters and involved in cardioprotection, was examined in hearts treated with BZ in presence of the p38MAPK inhibitor SB202190 (10 µM). Infarct size (IZ) and myocardial function were assessed, and phosphorylated forms of p38MAPK, Akt, and PKCε were evaluated by immunoblotting. We determined the rate of intracellular pH (pHi) normalization after transient acid loading in the absence and presence of BZ or BZ + SB202190 in heart papillary muscles (HPMs). Mitochondrial membrane potential (ΔΨm), Ca2+ retention capacity and Ca2+-mediated swelling after I/R were also measured. BZ, similarly to AR, reduced IZ, improved postischemic recovery of myocardial contractility, increased phosphorylation of Akt, PKCε, and p38MAPK, and normalized ΔΨm and Ca2+ homeostasis, effects abolished after p38MAPK inhibition. In HPMs, BZ slowed pHi recovery, an effect that was restored after p38MAPK inhibition. We conclude that prolongation of acidic conditions during reperfusion by BZ could be responsible for the cardioprotective benefits of reduced infarction and better myocontractile function, through p38MAPK-dependent pathways. NEW & NOTEWORTHY Carbonic anhydrase inhibition by benzolamide (BZ) maintains acidity, decreases infarct size, and improves postischemic myocardial dysfunction in ischemia-reperfusion (I/R) hearts. Protection afforded by BZ mimicked the beneficial effects elicited by an acidic solution (AR). Increased phosphorylation of p38MAPK occurs in I/R hearts reperfused with BZ or with AR. Mitochondria from I/R hearts possess abnormal Ca2+ handling and a more depolarized membrane potential compared with control hearts, and these changes were restored by treatment with BZ or AR.


Asunto(s)
Benzolamida/farmacología , Infarto del Miocardio/tratamiento farmacológico , Isquemia Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión/tratamiento farmacológico , Animales , Inhibidores de Anhidrasa Carbónica/farmacología , Anhidrasas Carbónicas/metabolismo , Infarto del Miocardio/metabolismo , Isquemia Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Wistar , Daño por Reperfusión/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
14.
Cytotechnology ; 68(4): 665-74, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25432330

RESUMEN

The adult heart contains a population of cardiac progenitor cells (CPCs). Growing and collecting an adequate number of CPCs demands complex culture media containing growth factors. Since activated macrophages secrete many growth factors, we investigated if activated isolated heart cells seeded on a feeder layer of activated peritoneal macrophages (PM) could result in CPCs and if these, in turn, could exert cardioprotection in rats with myocardial infarction (MI). Heart cells of inbred Wistar rats were isolated by collagenase digestion and cultured on PM obtained 72 h after intraperitoneal injection of 12 ml thioglycollate. Cells (1 × 10(6)) exhibiting CPC phenotype (immunohistochemistry) were injected in the periphery of rat MI 10 min after coronary artery occlusion. Control rats received vehicle. Three weeks later, left ventricular (LV) function (echocardiogram) was assessed, animals were euthanized and the hearts removed for histological studies. Five to six days after seeding heart cells on PM, spherical clusters composed of small bright and spherical cells expressing mostly c-Kit and Sca-1 antigens were apparent. After explant, those clusters developed cobblestone-like monolayers that expressed smooth muscle actin and sarcomeric actin and were successfully transferred for more than ten passages. When injected in the MI periphery, many of them survived at 21 days after coronary ligature, improved LV ejection fraction and decreased scar size as compared with control rats. CPC-derived cells with cardiocyte and smooth muscle phenotypes can be successfully grown on a feeder layer of activated syngeneic PM. These cells decreased scar size and improved heart function in rats with MI.

15.
J Am Heart Assoc ; 5(10)2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27744404

RESUMEN

BACKGROUND: Myocardial stretch increases force biphasically: the Frank-Starling mechanism followed by the slow force response (SFR). Based on pharmacological strategies, we proposed that epidermal growth factor (EGF) receptor (EGFR or ErbB1) activation is crucial for SFR development. Pharmacological inhibitors could block ErbB4, a member of the ErbB family present in the adult heart. We aimed to specifically test the role of EGFR activation after stretch, with an interference RNA incorporated into a lentiviral vector (small hairpin RNA [shRNA]-EGFR). METHODS AND RESULTS: Silencing capability of p-shEGFR was assessed in EGFR-GFP transiently transfected HEK293T cells. Four weeks after lentivirus injection into the left ventricular wall of Wistar rats, shRNA-EGFR-injected hearts showed ≈60% reduction of EGFR protein expression compared with shRNA-SCR-injected hearts. ErbB2 and ErbB4 expression did not change. The SFR to stretch evaluated in isolated papillary muscles was ≈130% of initial rapid phase in the shRNA-SCR group, while it was blunted in shRNA-EGFR-expressing muscles. Angiotensin II (Ang II)-dependent Na+/H+ exchanger 1 activation was indirectly evaluated by intracellular pH measurements in bicarbonate-free medium, demonstrating an increase in shRNA-SCR-injected myocardium, an effect not observed in the silenced group. Ang II- or EGF-triggered reactive oxygen species production was significantly reduced in shRNA-EGFR-injected hearts compared with that in the shRNA-SCR group. Chronic lentivirus treatment affected neither the myocardial basal redox state (thiobarbituric acid reactive substances) nor NADPH oxidase activity or expression. Finally, Ang II or EGF triggered a redox-sensitive pathway, leading to p90RSK activation in shRNA-SCR-injected myocardium, an effect that was absent in the shRNA-EGFR group. CONCLUSIONS: Our results provide evidence that specific EGFR activation after myocardial stretch is a key factor in promoting the redox-sensitive kinase activation pathway, leading to SFR development.


Asunto(s)
Receptores ErbB/genética , Corazón/fisiopatología , Miocardio/metabolismo , Angiotensina II/farmacología , Animales , Receptores ErbB/metabolismo , Silenciador del Gen , Proteínas Fluorescentes Verdes , Células HEK293 , Corazón/efectos de los fármacos , Humanos , Concentración de Iones de Hidrógeno , Masculino , ARN Interferente Pequeño , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Receptor ErbB-2/metabolismo , Receptor ErbB-4/metabolismo , Intercambiador 1 de Sodio-Hidrógeno/metabolismo , Vasoconstrictores/farmacología
16.
Cardiovasc Pathol ; 25(6): 468-477, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27614168

RESUMEN

BACKGROUND: Two potent carbonic anhydrase (CA) inhibitors with widely differing membrane permeability, poorly diffusible benzolamide (BZ), and highly diffusible ethoxzolamide (ETZ) were assessed to determine whether they can reduce cardiac dysfunction in rats subjected to coronary artery ligation (CAL)-induced myocardial infarction. METHODS AND RESULTS: Rats with evidence of heart failure (HF) at 32 weeks following a permanent left anterior coronary artery occlusion were treated with placebo, BZ, or ETZ (4 mg kgday-1) for 4 weeks at which time left ventricular function and structure were evaluated. Lung weight/body weight (LW/BW) ratio increased in CAL rats by 17±1% vs. control, suggesting pulmonary edema. There was a trend for BZ and ETZ to ameliorate the increase in LW/BW by almost 50% (9±5% and 9±8%, respectively, versus CAL) (P=.16, NS). Echocardiographic assessment showed decreased left ventricular midwall shortening in HF rats, 21±1% vs. control 32±1%, which was improved by BZ to 29±1% and ETZ to 27±1%, and reduced endocardial shortening in HF rats 38±3% vs. control 62±1%, partially restored by BZ and ETZ to ~50%. Expression of the hypoxia-inducible membrane-associated CAIX isoform increased by ~60% in HF rat hearts, and this effect was blocked by ETZ. CONCLUSIONS: We conclude that CAL-induced myocardial interstitial fibrosis and associated decline in left ventricular function were diminished with BZ or ETZ treatment. The reductions in cardiac remodeling in HF with both ETZ and BZ CA inhibitors suggest that inhibition of a membrane-bound CA appears to be the critical site for this protection.


Asunto(s)
Benzolamida/farmacología , Inhibidores de Anhidrasa Carbónica/farmacología , Etoxzolamida/farmacología , Corazón/efectos de los fármacos , Infarto del Miocardio/patología , Animales , Vasos Coronarios/cirugía , Modelos Animales de Enfermedad , Immunoblotting , Ligadura , Masculino , Ratas , Ratas Wistar , Función Ventricular Izquierda/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos
17.
Hypertension ; 63(1): 112-8, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24126173

RESUMEN

Myocardial stretch triggers an angiotensin II-dependent autocrine/paracrine loop of intracellular signals, leading to reactive oxygen species-mediated activation of redox-sensitive kinases. Based on pharmacological strategies, we previously proposed that mineralocorticoid receptor (MR) is necessary for this stretch-triggered mechanism. Now, we aimed to test the role of MR after stretch by using a molecular approach to avoid secondary effects of pharmacological MR blockers. Small hairpin interference RNA capable of specifically knocking down the MR was incorporated into a lentiviral vector (l-shMR) and injected into the left ventricular wall of Wistar rats. The same vector but expressing a nonsilencing sequence (scramble) was used as control. Lentivirus propagation through the left ventricle was evidenced by confocal microscopy. Myocardial MR expression, stretch-triggered activation of redox-sensitive kinases (ERK1/2-p90(RSK)), the consequent Na(+)/H(+) exchanger-mediated changes in pHi (HEPES-buffer), and its mechanical counterpart, the slow force response, were evaluated. Furthermore, reactive oxygen species production in response to a low concentration of angiotensin II (1.0 nmol/L) or an equipotent concentration of epidermal growth factor (0.1 µg/mL) was compared in myocardial tissue slices from both groups. Compared with scramble, animals transduced with l-shMR showed (1) reduced cardiac MR expression, (2) cancellation of angiotensin II-induced reactive oxygen species production but preservation of epidermal growth factor-induced reactive oxygen species production, (3) cancellation of stretch-triggered increase in ERK1/2-p90(RSK) phosphorylation, (4) lack of stretch-induced Na(+)/H(+) exchanger activation, and (5) abolishment of the slow force response. Our results provide strong evidence that MR activation occurs after myocardial stretch and is a key factor to promote redox-sensitive kinase activation and their downstream consequences.


Asunto(s)
Miocardio/metabolismo , Receptores de Mineralocorticoides/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Animales , Vectores Genéticos , Corazón/fisiología , Lentivirus , Masculino , Mitocondrias/metabolismo , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Intercambiador 1 de Sodio-Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA