Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 16402, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014080

RESUMEN

The study of rock burst tendency of rock masses with different sizes plays a key role in the prevention of rock burst. Through theoretical analysis, it is proposed that uniaxial compressive strength and deformation modulus ratio are the key mechanical parameters affecting rock burst occurrence. In order to find out the size effect of uniaxial compressive strength and deformation modulus ratio, theoretical analysis and uniaxial compression experiment are carried out on rock samples with different heights, different cross-sectional areas and different volumes. The results show that the smaller the uniaxial compressive strength is, the larger the deformation modulus ratio is, and the more likely rock burst are to occur. On the contrary, rock burst is still not easy to generate. The uniaxial compressive strength of rock samples with different heights, different cross-sectional areas and different volumes increases with the increase of rock sample size. The deformation modulus ratio of rock samples with different heights and different volumes shows an upward trend on the whole, while that of rock samples with different cross-sectional areas shows a downward trend on the whole. The fracture forms of rock are analyzed using the energy conversion law in the process of deformation and failure for three kinds of rock with different shapes and sizes.

2.
Sci Rep ; 14(1): 15773, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982212

RESUMEN

We carried out uniaxial compression tests on brittle red sandstone with different heights. The test results show that the uniaxial compressive strength of rock sample increases first and then tends to be stable with the increase of the size, which is approximately stable between 75 and 81 MPa. Both elastic energy and dissipated energy increase with the increase of rock sample size. In order to further analyze the mechanism behind these phenomena, we combined advanced numerical simulation and theoretical analysis to explain these phenomena, and systematically analyzed the end face effect as one of the key factors affecting the uniaxial compression characteristics of brittle red sandstone for the first time. Small sized rock samples are very sensitive to end effect. The middle of the large sized rock samples is in a uniform compression state, and the effect of end effect is weakend. When there are rigid pads at both ends of the rock sample, there is an obvious elastic vertebral body during the loading process of the rock sample. The bearing capacity of rock samples with rigid pads is greater than that of rock samples without rigid pads, and the energy released during instantaneous failure of rock samples without rigid pads is greater than that of rock samples with rigid pads. The findings of this paper make a valuable contribution to establishing optimal study sample sizes and advancing the utilization of laboratory test mechanics parameters in engineering applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA