Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Transl Med ; 22(1): 102, 2024 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-38273276

RESUMEN

BACKGROUND: While antibiotics remain our primary tools against microbial infection, increasing antibiotic resistance (inherent and acquired) is a major detriment to their efficacy. A practical approach to maintaining or reversing the efficacy of antibiotics is the use of other commonly used therapeutics, which show synergistic antibacterial action with antibiotics. Here, we investigated the extent of antibacterial synergy between the antibiotic gentamicin and the anti-inflammatory ketorolac regarding the dynamics of biofilm growth, the rate of acquired resistance, and the possible mechanism of synergy. METHODS: Control (ATCC 12600, ATCC 35984) and clinical strains (L1101, L1116) of Staphylococcus aureus and Staphylococcus epidermidis with varying antibiotic susceptibility profiles were used in this study to simulate implant-material associated low-risk and high-risk biofilms in vitro. The synergistic action of gentamicin sulfate (GS) and ketorolac tromethamine (KT), against planktonic staphylococcal strains were determined using the fractional inhibitory concentration measurement assay. Nascent (6 h) and established (24 h) biofilms were grown on 316L stainless steel plates and the synergistic biofilm eradication activity was determined and characterized using adherent bacteria count, minimum biofilm eradication concentration (MBEC) measurement for GS, visualization by live/dead imaging, scanning electron microscopy, gene expression of biofilm-associated genes, and bacterial membrane fluidity assessment. RESULTS: Gentamicin-ketorolac (GS-KT) combination demonstrated synergistic antibacterial action against planktonic Staphylococci. Control and clinical strains showed distinct biofilm growth dynamics and an increase in biofilm maturity was shown to confer further resistance to gentamicin for both 'low-risk' and 'high-risk' biofilms. The addition of ketorolac enhanced the antibiofilm activity of gentamicin against acquired resistance in staphylococcal biofilms. Mechanistic studies revealed that the synergistic action of gentamicin-ketorolac interferes with biofilm morphology and subverts bacterial stress response altering bacterial physiology, membrane dynamics, and biofilm properties. CONCLUSION: The results of this study have a significant impact on the local administration of antibiotics and other therapeutic agents commonly used in the prevention and treatment of orthopaedic infections. Further, these results warrant the study of synergy for the concurrent or sequential administration of non-antibiotic drugs for antimicrobial effect.


Asunto(s)
Gentamicinas , Infecciones Estafilocócicas , Humanos , Gentamicinas/farmacología , Gentamicinas/uso terapéutico , Ketorolaco/farmacología , Ketorolaco/uso terapéutico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Staphylococcus aureus , Biopelículas , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/prevención & control , Pruebas de Sensibilidad Microbiana
2.
Mol Genet Metab ; 134(1-2): 132-138, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34391645

RESUMEN

Duarte galactosemia is not classic galactosemia, but rather an example of biochemical variant galactosemia that results in approximately 25% residual activity of galactose-1-phosphate uridylyltransferase (GALT) enzyme. In contrast, classic galactosemia is associated with complete or near complete absence of GALT activity. While infants with classic galactosemia are placed on galactose-restricted diets to prevent the acute and long-term manifestations of their metabolic disorder, while individuals with Duarte variant galactosemia (Duarte-2 galactosemia) do not require diet therapy. The long-term complications that are seen in classic galactosemia such as cerebellar ataxia, and hypergonadotropic hypogonadism do not occur in Duarte-2 galactosemia. While Duarte galactosemia does not appear to be a metabolic disease, it may have an impact on early neurodevelopmental outcomes. This study examined developmental outcomes and the need for special services in individuals with Duarte-2 galactosemia in comparison to individuals with classic galactosemia. We performed a medical record review of individuals with GALT deficiency who were evaluated at Boston Children's Hospital and enrolled in our study of outcomes in galactosemia. This included 95 participants, 21 with Duarte-2 galactosemia and 73 with classic galactosemia. Duarte-2 participants had developmental test scores within the average range. However, 42% of subjects with Duarte-2 galactosemia had participated in early intervention and/or special education and 32% received speech therapy. Their pattern of strengths and weaknesses in cognitive/language/motor domains was similar to that noted in participants with classic galactosemia, albeit to a milder degree. The data indicate that in children with Duarte-2 variant galactosemia, the cognitive/language and motor skills were within normal limits with their cognitive/language skills developing earlier than their motor skills during their first year of life. A history of diet treatment was not related to the use of special services. These results suggest that Duarte-2 galactosemia increases the risk for early mild developmental delays irrespective of treatment history, which resolves over time, and highlights the need to further assess neurodevelopment in early infancy, in Duarte-2 galactosemia. As Duarte-2 galactosemia is not a bona fide biochemical genetic disease, we hypothesize that elements in the genomic space that include the GALT gene are responsible for a transient delay in language-related motor skills during early infancy.


Asunto(s)
Alelos , Desarrollo Infantil , Galactosemias/clasificación , Galactosemias/genética , Variación Genética , Preescolar , Femenino , Galactosemias/fisiopatología , Genotipo , Humanos , Lactante , Masculino , Trastornos del Neurodesarrollo/etiología , Trastornos del Neurodesarrollo/genética , Fenotipo , Estudios Retrospectivos , UTP-Hexosa-1-Fosfato Uridililtransferasa/genética
3.
Mol Genet Metab ; 126(4): 368-376, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30718057

RESUMEN

BACKGROUND: GALT deficiency is a rare genetic disorder of carbohydrate metabolism. Due to the decreased activity or absence of the enzyme galactose-1-phosphate uridylyltransferase (GALT), cells from affected individuals are unable to metabolize galactose normally. Lactose consumption in the newborn period could potentially lead to a lethal disease process with multi-organ involvement. In contrast to the newborn-stage disease, however, a galactose-restricted diet does not prevent long-term complications such as central nervous system (CNS) dysfunction with speech defects, learning disability and neurological disease in addition to hypergonadotropic hypogonadism or primary ovarian insufficiency (POI) in females. As the literature suggests an association between GALT enzyme activity and the long-term complications, it is of importance to have a highly sensitive assay to quantify the GALT enzyme activity. To that end, we had developed a sensitive and accurate LC-MS/MS method to measure GALT enzyme activity. Its ability to predict outcome is the subject of this report. MATERIALS AND METHODS: The GALT enzyme activity in erythrocytes from 160 individuals, in which 135 with classic, clinical variant or biochemical variant galactosemia, was quantified by LC-MS/MS. Individuals with GALT deficiency were evaluated for the long-term complications of speech defects, dysarthria, ataxia, dystonia, tremor, POI, as well as intellectual functioning (full scale IQ). The LC-MS/MS results were compared to a variety of assays: radioactive, [14C]-galactose-1-phosphate, paper chromatography with scintillation counting, enzyme-coupled assays with spectrophotometric or fluorometric readout or high-pressure liquid chromatography with UV detection of UDP-galactose. RESULTS: The LC-MS/MS method measured GALT activity as low as 0.2%, whereas other methods showed no detectable activity. Largely due to GALT activities that were over 1%, the LC-MS/MS measurements were not significantly different than values obtained in other laboratories using other methodologies. Severe long-term complications were less frequently noted in subjects with >1% activity. Patients with a p.Q188R/p.Q188R genotype have no residual enzyme activity in erythrocytes. CONCLUSION: Our LC-MS/MS assay may be necessary to accurately quantify residual GALT activities below 5%. The data suggest that patients with >1% residual activity are less likely to develop diet-independent long-term complications. However, much larger sample sizes are needed to properly assess the clinical phenotype in patients with residual enzyme activities between 0.1 and 5%.


Asunto(s)
Eritrocitos/enzimología , Galactosemias/diagnóstico , UTP-Hexosa-1-Fosfato Uridililtransferasa/sangre , Adolescente , Adulto , Anciano , Niño , Preescolar , Pruebas de Enzimas , Femenino , Galactosa/metabolismo , Humanos , Lactante , Masculino , Persona de Mediana Edad , Fenotipo , Estudios Retrospectivos , Sensibilidad y Especificidad , Espectrometría de Masas en Tándem , Adulto Joven
4.
Res Sq ; 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37961705

RESUMEN

Background: While antibiotics remain our primary tools against microbial infection, increasing antibiotic resistance (inherent and acquired) is a major detriment to their efficacy. A practical approach to maintaining or reversing the efficacy of antibiotics is the use of other commonly used therapeutics, which show synergistic antibacterial action with antibiotics. Here, we investigated the extent of antibacterial synergy between the antibiotic gentamicin and the anti-inflammatory ketorolac regarding the dynamics of biofilm growth, the rate of acquired resistance, and the possible mechanism of synergy. Methods: Control (ATCC 12600, ATCC 35984) and clinical strains (L1101, L1116) of S. aureus and S. epidermidis with varying antibiotic susceptibility profiles were used in this study to simulate implant-material associated low-risk and high-risk biofilms in vitro. The synergistic action of gentamicin sulfate (GS) and ketorolac tromethamine (KT), against planktonic staphylococcal strains were determined using the fractional inhibitory concentration measurement assay. Nascent (6hr) and established (24hr) biofilms were grown on 316 stainless steel plates and the synergistic biofilm eradication activity was determined and characterized using adherent bacteria count, MBEC measurement for GS, gene expression of biofilm-associated genes, visualization by live/dead imaging, scanning electron microscopy, and bacterial membrane fluidity assessment. Results: Gentamicin-ketorolac combination demonstrated synergistic antibacterial action against planktonic Staphylococci. Control and clinical strains showed distinct biofilm growth dynamics and an increase in biofilm maturity was shown to confer further resistance to gentamicin for both 'low-risk' and 'high-risk' biofilms. The addition of ketorolac enhanced the antibiofilm activity of gentamicin against acquired resistance in staphylococcal biofilms. Mechanistic studies revealed that the synergistic action of gentamicin-ketorolac interferes with biofilm morphology and subverts bacterial stress response altering bacterial physiology, membrane dynamics, and biofilm properties. Conclusion: The results of this study have a significant impact on the local administration of antibiotics and other therapeutic agents commonly used in the prevention and treatment of orthopaedic infections. Further, these results warrant the study of synergy for the concurrent or sequential administration of non-antibiotic drugs for antimicrobial effect.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA