Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 280(1): 494-505, 2005 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-15507442

RESUMEN

The alpha-interacting domain (AID) in the I-II linker of high voltage-activated (HVA) Ca(2+) channel alpha1 subunits binds with high affinity to Ca(V)beta auxiliary subunits. The recently solved crystal structures of the AID-Ca(V)beta complex in Ca(V)1.1/1.2 have revealed that this interaction occurs through a set of six mostly invariant residues Glu/Asp(6), Leu(7), Gly(9), Tyr(10), Trp(13), and Ile(14) (where the superscript refers to the position of the residue starting with the QQ signature doublet) distributed among three alpha-helical turns in the proximal section of the I-II linker. We show herein that alanine mutations of N-terminal AID residues Gln(1), Gln(2), Ile(3), Glu(4), Glu(6), Leu(7), and Gly(9) in Ca(V)2.3 did not abolish [(35)S]Ca(V)beta 1b or [(35)S]Ca(V)beta 3 subunit overlay binding to fusion proteins nor did they prevent the typical modulation of whole cell currents by Ca(V)beta 3. Mutations of the invariant Tyr(10) with either hydrophobic (Ala), aromatic (Phe), or positively charged (Arg, Lys) residues yielded Ca(V)beta 3-responsive whole cell currents, whereas mutations with negatively charged residues (Asp, Glu) disrupted Ca(V)beta 3 binding and modulation. In contrast, modulation and binding by Ca(V)beta 3 was significantly weakened in I14A (neutral and hydrophobic) and I14S (neutral and polar) mutants and eradicated in negatively charged I14D and I14E or positively charged I14R and I14K mutants. Ca(V)beta 3-induced modulation was only preserved with the conserved I14L mutation. Molecular replacement analyses carried out using a three-dimensional homology model of the AID helix from Ca(V)2.3 suggests that a high degree of hydrophobicity and a restrained binding pocket could account for the strict structural specificity of the interaction site found at position Ile(14). Altogether these results indicate that the C-terminal residues Trp(13) (1) and Ile(14) anchor Ca(V)beta subunit functional modulation of HVA Ca(2+) channels.


Asunto(s)
Canales de Calcio/química , Proteínas de Transporte de Catión/química , Modelos Moleculares , Alanina , Animales , Canales de Calcio/metabolismo , Canales de Calcio Tipo R , Proteínas de Transporte de Catión/metabolismo , Humanos , Mutación , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Subunidades de Proteína , Ratas , Relación Estructura-Actividad
2.
Biophys J ; 87(5): 3181-92, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15339810

RESUMEN

The E462R mutation in the fifth position of the AID (alpha1 subunit interaction domain) region in the I-II linker is known to significantly accelerate voltage-dependent inactivation (VDI) kinetics of the L-type CaV1.2 channel, suggesting that the AID region could participate in a hinged-lid type inactivation mechanism in these channels. The recently solved crystal structures of the AID-CaVbeta regions in L-type CaV1.1 and CaV1.2 channels have shown that in addition to E462, positions occupied by Q458, Q459, E461, K465, L468, D469, and T472 in the rabbit CaV1.2 channel could also potentially contribute to a hinged-lid type mechanism. A mutational analysis of these residues shows that Q458A, Q459A, K465N, L468R, D469A, and T472D did not significantly alter VDI gating. In contrast, mutations of the negatively charged E461, E462, and D463 to neutral or positively charged residues increased VDI gating, suggesting that the cluster of negatively charged residues in the N-terminal end of the AID helix could account for the slower VDI kinetics of CaV1.2. A mutational analysis at position 462 (R, K, A, G, D, N, Q) further confirmed that E462R yielded faster VDI kinetics at +10 mV than any other residue with E462R >> E462K approximately E462A > E462N > wild-type approximately E462Q approximately E462G > E462D (from the fastest to the slowest). E462R was also found to increase the VDI gating of the slow CEEE chimera that includes the I-II linker from CaV1.2 into a CaV2.3 background. The fast VDI kinetics of the CaV1.2 E462R and the CEEE + E462R mutants were abolished by the CaVbeta2a subunit and reinstated when using the nonpalmitoylated form of CaVbeta2a C3S + C4S (CaVbeta2a CS), confirming that CaVbeta2a and E462R modulate VDI through a common pathway, albeit in opposite directions. Altogether, these results highlight the unique role of E461, E462, and D463 in the I-II linker in the VDI gating of high-voltage activated CaV1.2 channels.


Asunto(s)
Canales de Calcio Tipo L/fisiología , Activación del Canal Iónico/fisiología , Potenciales de la Membrana/fisiología , Oocitos/fisiología , Sustitución de Aminoácidos , Aminoácidos/metabolismo , Animales , Células Cultivadas , Mutagénesis Sitio-Dirigida , Estructura Secundaria de Proteína , Electricidad Estática , Relación Estructura-Actividad , Xenopus laevis
3.
J Biol Chem ; 279(8): 6853-62, 2004 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-14630907

RESUMEN

The substituted cysteine accessibility method (SCAM) was used to map the external vestibule and the pore region of the ECaC-TRPV5 calcium-selective channel. Cysteine residues were introduced at 44 positions from the end of S5 (Glu515) to the beginning of S6 (Ala560). Covalent modification by positively charged MTSET applied from the external medium significantly inhibited whole cell currents at 15/44 positions. Strongest inhibition was observed in the S5-linker to pore region (L520C, G521C, and E522C) with either MTSET or MTSES suggesting that these residues were accessible from the external medium. In contrast, the pattern of covalent modification by MTSET for residues between Pro527 and Ile541 was compatible with the presence of a alpha-helix. The absence of modification by the negatively charged MTSES in that region suggests that the pore region has been optimized to favor the entrance of positively charged ions. Cysteine mutants at positions -1, 0, +1, +2 around Asp542 (high Ca2+ affinity site) were non-functional. Whole cell currents of cysteine mutants at +4 and +5 positions were however covalently inhibited by external MTSET and MTSES. Altogether, the pattern of covalent modification by MTS reagents globally supports a KcsA homology-based three-dimensional model whereby the external vestibule in ECaC-TRPV5 encompasses three structural domains consisting of a coiled structure (Glu515 to Tyr526) connected to a small helical segment of 15 amino acids (527PTALFSTFELFLT539) followed by two distinct coiled structures Ile540-Pro544 (selectivity filter) and Ala545-Ile557 before the beginning of S6.


Asunto(s)
Canales de Calcio/química , Secuencia de Aminoácidos , Aminoácidos/química , Animales , Calcio/química , Cisteína/química , ADN Complementario/metabolismo , Femenino , Iones , Isoleucina/química , Modelos Biológicos , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis , Mutagénesis Sitio-Dirigida , Mutación , Técnicas de Placa-Clamp , Prolina/química , Estructura Secundaria de Proteína , Homología de Secuencia de Aminoácido , Programas Informáticos , Canales Catiónicos TRPV , Factores de Tiempo , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA