Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-31097845

RESUMEN

This paper presents a six degree-of-freedom (DOF) real-time motion tracking system of measuring the position and the orientation for industrial robots in three-dimensional (3D) space. The proposed system is based on a typical Stewart platform design and utilizes six low-cost displacement sensors to monitor the motion of the Stewart platform. The advantage of the proposed system is its simple calibration and easy accessibility; the magnetic ball-and-socket joints used for rotational joints. With special measurement tools, the center of rotation of all twelve joints can be measured in 3D space at a glance. Following more than fifty measurements, the average root mean square (RMS) position accuracy error of the proposed device is less than 0.186 mm and the average of angular accuracy error is less than 0.160 °, making it suitable for monitoring the performance of industrial robot. A commercial robot is also tested by the proposed system to verify its usefulness.

2.
Microelectron Eng ; 187-1882018.
Artículo en Inglés | MEDLINE | ID: mdl-33060873

RESUMEN

Fabry-Pérot interferometer sensors have been widely used in Micro-Electro-Mechanical-Systems (MEMS) due to high displacement accuracy and immunity to electromagnetic noises, but they are still limited by micro scale measurement range. In this paper, a Fabry-Pérot interferometer in-plane displacement sensor is proposed for measuring the displacement of MEMS devices utilizing a polished optical fiber and a modulated laser source. The polished optical fiber and a sidewall of a MEMS device form an optical cavity for the proposed sensor. The sinusoidal phase modulation with extreme point search algorithm enables the proposed sensor to measure displacements larger than the wavelengths of the laser light in real time. The experimental results show that the proposed displacement sensor has a capability to measure displacements larger than 3 µm and it shows the measurement accuracy less than 35 nm. The proposed displacement sensor is then embedded on a single degree-of-freedom MEMS motion stage and tested to monitor its displacement in real time.

3.
Lab Chip ; 10(20): 2749-57, 2010 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-20820483

RESUMEN

Rheological methods that interrogate nanolitre scale volumes of fluids and solids have advanced considerably over the past decade, yet there remains a need for methods that probe the frequency-dependent complex rheological moduli through application of homogenous strain fields. Here we describe a Micro-Electro-Mechanical System (MEMS) based approach for the measurement of dynamic rheology of soft matter where oscillatory strain is produced in a sample sandwiched between an oscillating MEMS stage and a glass plate. The resulting stress-strain relationships are revealed by measurement and analysis of the stage motion. We present preliminary data on simple viscous fluids and on viscoelastic thin films. In this proof-of-principle device, we measure moduli in the range of 50 Pa to 10 kPa over a range of 3 rad s(-1) to 3000 rad s(-1) using less than 5 nL of sample material. The device's measurement window is limited primarily by our current ability to measure the motion of the stage. This device will provide a new way to characterize dynamic microrheology of an array of novel materials and will prove useful in a number of areas including biorheology, microfluidics and polymer thin films.

4.
J Res Natl Inst Stand Technol ; 113(2): 121-9, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-27096115

RESUMEN

With rapid advances in meso-, micro- and nano-scale technology devices and electronics, a new generation of advanced medical devices is emerging, which promises medical treatment that is less invasive and more accurate, automated, and effective. We examined the technological and economic status of five categories of medical devices. A set of metrology needs is identified for each of these categories and suggestions are made to address them.

5.
Rev Sci Instrum ; 87(6): 065001, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27370483

RESUMEN

This paper describes the design of a very simple displacement sensor that measures the change in the position of an object by sensing the change in capacitance due to the movement of this object in the sensor fringing electric field. Two sensor geometries with small footprints were considered and several sensor variations were built and tested. At distances of approximately 0.5 µm and 30 µm, test results demonstrated that the sensors' resolution was in the order of tens of nanometers.

6.
Ind Rob ; 43(3): 328-337, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28579658

RESUMEN

The Dynamic Impact Testing and Calibration Instrument (DITCI) is a simple instrument with a significant data collection and analysis capability that is used for the testing and calibration of biosimulant human tissue artifacts. These artifacts may be used to measure the severity of injuries caused in the case of a robot impact with a human. In this paper we describe the DITCI adjustable impact and flexible foundation mechanism, which allows the selection of a variety of impact force levels and foundation stiffness. The instrument can accommodate arrays of a variety of sensors and impact tools, simulating both real manufacturing tools and the testing requirements of standards setting organizations. A computer data acquisition system may collect a variety of impact motion, force, and torque data, which are used to develop a variety of mathematical model representations of the artifacts. Finally, we describe the fabrication and testing of human abdomen soft tissue artifacts, used to display the magnitude of impact tissue deformation. Impact tests were performed at various maximum impact force and average pressure levels.

7.
Electronics (Basel) ; 19(2): 45-51, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27088006

RESUMEN

Rotational rheometers are used to measure paste properties, but the test would take too long to be useful for quality control (QC) on the job site. In this paper, a new type of rheometer is proposed based on a one degree of freedom (DOF) micro-electro-mechanical systems (MEMS)-based motion stage. Preliminary data will be presented to show the capability of the system to measure the viscoelastic properties of a paste. The parallel plate geometry rheometer consists of two plates, which move relative to each other to apply a strain to the material to be tested. From the stress measured and the strain applied, the rheological characteristics of the material can be calculated. The new device consists of an electrothermal actuator and a motion plate. For the rheological measurements, the device is designed to generate the shear stress up to 60 Pa and maintain its stiffness to less than 44 N/m. With these features, the device uses a square plate of 1.5 mm x 1.5 mm to provide enough area for a few micro-liter level volumes. The motion of the square plate is monitored by a capacitive sensor at the end of the oscillating plate which has a resolution of 1.06 µm. When a reference cementitious paste, Standard Reference Material (SRM)-2492, is placed between the oscillating plate of the presented motion stage and a fixed plate, the reduction in the displacement of the oscillating plate is monitored showing that the presented motion stage is reasonably designed to detect the response of the reference cementitious paste.

8.
J Res Natl Inst Stand Technol ; 97(3): 373-385, 1992.
Artículo en Inglés | MEDLINE | ID: mdl-28053439

RESUMEN

The Robot Systems Division of the National Institute of Standards and Technology has been experimenting for several years with new concepts for robot cranes. These concepts utilize the basic idea of the Stewart Platform parallel link manipulator. The unique feature of the NIST approach is to use cables as the parallel links and to use winches as the actuators. So long as the cables are all in tension, the load is kinematically constrained, and the cables resist perturbing forces and moments with equal stiffness to both positive and negative loads. The result is that the suspended load is constrained with a mechanical stiffness determined by the elasticity of the cables, the suspended weight, and the geometry of the mechanism. Based on these concepts, a revolutionary new type of robot crane, the NIST SPIDER (Stewart Platform Instrumented Drive Environmental Robot) has been developed that can control the position, velocity, and force of tools and heavy machinery in all six degrees of freedom (x, y, z, roll, pitch, and yaw). Depending on what is suspended from its work platform, the SPIDER can perform a variety of tasks. Examples are: cutting, excavating and grading, shaping and finishing, lifting and positioning. A 6 m version of the SPIDER has been built and critical performance characteristics analyzed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA