Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Food Microbiol ; 104: 104006, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35287824

RESUMEN

Pink discoloration defect can cause economic losses for cheese producers due to the impossibility to sell the defected cheese, but few knowledge is currently available on the causes of this defect. To gain more insight on the causes that lead to the formation of pink discoloration in Pecorino Toscano cheese with the Protected Designation of Origin (PDO) status, the bacterial community in defected and not defected cheese was characterized by high-throughput sequencing of bacterial 16S rRNA gene. The bacterial community in the defected cheese significantly differed compared to the control. The relative abundance of the genera Acidipropionibacterium, Enterococcus, Escherichia/Shigella, Lactobacillus, Lentilactobacillus and Propionibacterium was higher in the cheese with pink discoloration defect. The concentration of short chain fatty acids and of lactic acid in cheese was measured and a shift towards the production of propionate in the cheese with pink discoloration defect was observed. Furthermore, the possible involvement of microbially produced vitamin B12 in the formation of pink discoloration was not supported by the data, since a tendency to a lower concentration of vitamin B12 was measured in the defected cheese compared to the control.


Asunto(s)
Queso , Microbiota , Queso/microbiología , Lactobacillaceae/genética , Lactobacillus/genética , ARN Ribosómico 16S/genética
2.
Food Microbiol ; 92: 103598, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32950139

RESUMEN

The fungal microbiota usually growing on the cheese surface during ripening processes promote rind formation and the development of organoleptic characteristics, imparting positive sensory attributes to cheeses. As cheese contamination may also occur by undesirable molds, specific actions for preventing their growth are usually realized in dairy industries by using the antibiotic natamycin, which may represent a risk factor for human health and environmental sustainability. Here, agroindustrial by-products with natural antimicrobial properties, i.e. tannins and chitosan, were tested in a cheese-making trial producing PDO Tuscan pecorino cheese. Morphological and molecular methods revealed that the main components of rind fungal communities of PDO Tuscan pecorino cheese were represented by P. solitum, P. discolour and P. verrucosum. The use of chitosan on cheese rinds did not significantly affect the composition of rind fungal communities developing during the whole ripening process compared with controls treated with natamycin, whose numbers ranged from 3.4 ± 1.3 × 103 to 3.2 ± 1.8 × 104 and from 6.3 ± 3.5 × 102 to 4.0 ± 1.5 × 104, respectively. Overall, grape marc tannins and chitosan did not significantly affect the number and composition of fungal communities developing during PDO Pecorino Toscano cheese ripening, as well as its physical, chemical and nutritional profiles, showing that they may represent effective alternatives to the antibiotic natamycin.


Asunto(s)
Antifúngicos/farmacología , Queso/microbiología , Quitosano/farmacología , Hongos/efectos de los fármacos , Micobioma/efectos de los fármacos , Extractos Vegetales/farmacología , Taninos/farmacología , Queso/análisis , Contaminación de Alimentos/análisis , Microbiología de Alimentos , Hongos/crecimiento & desarrollo , Humanos , Italia , Vitis/química
3.
Molecules ; 24(20)2019 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-31640295

RESUMEN

Two by-products containing phenols and polysaccharides, a "pâté" (OP) from the extra virgin olive oil milling process and a decoction of pomegranate mesocarp (PM), were investigated for their effects on human microbiota using the SHIME® system. The ability of these products to modulate the microbial community was studied simulating a daily intake for nine days. Microbial functionality, investigated in terms of short chain fatty acids (SCFA) and NH4+, was stable during the treatment. A significant increase in Lactobacillaceae and Bifidobacteriaceae at nine days was induced by OP mainly in the proximal tract. Polyphenol metabolism indicated the formation of tyrosol from OP mainly in the distal tract, while urolithins C and A were produced from PM, identifying the human donor as a metabotype A. The results confirm the SHIME® system as a suitable in vitro tool to preliminarily investigate interactions between complex botanicals and human microbiota before undertaking more challenging human studies.


Asunto(s)
Microbioma Gastrointestinal/efectos de los fármacos , Olea/química , Fenoles/administración & dosificación , Polisacáridos/administración & dosificación , Granada (Fruta)/química , Compuestos de Amonio/metabolismo , Bifidobacterium/clasificación , Bifidobacterium/efectos de los fármacos , Bifidobacterium/aislamiento & purificación , ADN Bacteriano/análisis , Ácidos Grasos Volátiles/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactobacillaceae/clasificación , Lactobacillaceae/efectos de los fármacos , Lactobacillaceae/aislamiento & purificación , Fenoles/química , Fenoles/farmacología , Filogenia , Polisacáridos/química , Polisacáridos/farmacología
4.
Appl Environ Microbiol ; 82(1): 297-307, 2016 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-26497463

RESUMEN

Hydrocarbons released during oil spills are persistent in marine sediments due to the absence of suitable electron acceptors below the oxic zone. Here, we investigated an alternative bioremediation strategy to remove toluene, a model monoaromatic hydrocarbon, using a bioanode. Bioelectrochemical reactors were inoculated with sediment collected from a hydrocarbon-contaminated marine site, and anodes were polarized at 0 mV and +300 mV (versus an Ag/AgCl [3 M KCl] reference electrode). The degradation of toluene was directly linked to current generation of up to 301 mA m(-2) and 431 mA m(-2) for the bioanodes polarized at 0 mV and +300 mV, respectively. Peak currents decreased over time even after periodic spiking with toluene. The monitoring of sulfate concentrations during bioelectrochemical experiments suggested that sulfur metabolism was involved in toluene degradation at bioanodes. 16S rRNA gene-based Illumina sequencing of the bulk anolyte and anode samples revealed enrichment with electrocatalytically active microorganisms, toluene degraders, and sulfate-reducing microorganisms. Quantitative PCR targeting the α-subunit of the dissimilatory sulfite reductase (encoded by dsrA) and the α-subunit of the benzylsuccinate synthase (encoded by bssA) confirmed these findings. In particular, members of the family Desulfobulbaceae were enriched concomitantly with current production and toluene degradation. Based on these observations, we propose two mechanisms for bioelectrochemical toluene degradation: (i) direct electron transfer to the anode and/or (ii) sulfide-mediated electron transfer.


Asunto(s)
Biodegradación Ambiental , Deltaproteobacteria/metabolismo , Electrodos , Sedimentos Geológicos/microbiología , Azufre/metabolismo , Tolueno/metabolismo , Anaerobiosis , Liasas de Carbono-Carbono , Hidrocarburos/metabolismo , Hidrogenosulfito Reductasa/genética , Hidrogenosulfito Reductasa/metabolismo , Consorcios Microbianos/fisiología , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Sulfatos/metabolismo , Contaminantes Químicos del Agua/metabolismo
5.
J Anim Sci Biotechnol ; 15(1): 48, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38561832

RESUMEN

BACKGROUND: Dietary supplements based on tannin extracts or essential oil compounds (EOC) have been repeatedly reported as a promising feeding strategy to reduce the environmental impact of ruminant husbandry. A previous batch culture screening of various supplements identified selected mixtures with an enhanced potential to mitigate ruminal methane and ammonia formation. Among these, Q-2 (named after quebracho extract and EOC blend 2, composed of carvacrol, thymol, and eugenol) and C-10 (chestnut extract and EOC blend 10, consisting of oregano and thyme essential oils and limonene) have been investigated in detail in the present study with the semi-continuous rumen simulation technique (Rusitec) in three independent runs. For this purpose, Q-2 and C-10, dosed according to the previous study, were compared with a non-supplemented diet (negative control, NC) and with one supplemented with the commercial EOC-based Agolin® Ruminant (positive control, PC). RESULTS: From d 5 to 10 of fermentation incubation liquid was collected and analysed for pH, ammonia, protozoa count, and gas composition. Feed residues were collected for the determination of ruminal degradability. On d 10, samples of incubation liquid were also characterised for bacterial, archaeal and fungal communities by high-throughput sequencing of 16S rRNA and 26S ribosomal large subunit gene amplicons. Regardless of the duration of the fermentation period, Q-2 and C-10 were similarly efficient as PC in mitigating either ammonia (-37% by Q-2, -34% by PC) or methane formation (-12% by C-10, -12% by PC). The PC was also responsible for lower feed degradability and bacterial and fungal richness, whereas Q-2 and C-10 effects, particularly on microbiome diversities, were limited compared to NC. CONCLUSIONS: All additives showed the potential to mitigate methane or ammonia formation, or both, in vitro over a period of 10 d. However, several differences occurred between PC and Q-2/C-10, indicating different mechanisms of action. The pronounced defaunation caused by PC and its suggested consequences apparently determined at least part of the mitigant effects. Although the depressive effect on NDF degradability caused by Q-2 and C-10 might partially explain their mitigation properties, their mechanisms of action remain mostly to be elucidated.

6.
Poult Sci ; 102(1): 102259, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36413899

RESUMEN

The recovery, safeguarding, and valorization of autochthonous poultry breeds may contribute toward the preservation of animal biodiversity and utilization of marginal lands that otherwise offer little agricultural or industrial value. A key strategy in promoting local breeds involves the characterization of morphological traits and productive performances, which are influenced by the breed's genetic make-up as well as its environment. The Mugellese breed is an Italian local poultry breed originating in the Mugello area of north-east Tuscany. It is characterized by frugality, resilience and resistance to disease, cold, and heat stress. Moreover, these birds are particularly suitable for free-range farming. The Mugellese chicken is described as a dwarf breed with a medium neck, broad shoulders, fairly long and horizontal wings, wide, and well-developed breast (especially in the hen). Over the course of a 1-yr observation and data collection period, involving 23 breeders and 405 adult chickens, the Mugellese breed showed the following performances: 1) a hen-day egg production characterized by 2 major peaks: the first in the spring time (March-April, 65.75%), and the second in the late summer period (August-September, 51.86%); 2) high true fertility values (94.35%) throughout the entire breeding season; 3) a weight gain of 732.44 ± 117.06 g and a feed conversion ratio of 3.94 ± 2.42 at an age of 140 d; 4) a slaughter yield of 77.80% (± 3.91); v) a respective protein, fat, and mineral content in the yolk and albumen were: 27.21 ± 4.21 g, 57.77 ± 1.03 g and 3.47 ± 0.40 g per 100 g of yolk; and 82.50 ± 0.57 g, 0.12 ± 0.01 g and 5.43 ± 0.34 g per 100 g of albumen. More data are needed to validate the data obtained in this trial.


Asunto(s)
Pollos , Reproducción , Animales , Femenino , Pollos/genética , Fertilidad , Agricultura , Italia
7.
Antibiotics (Basel) ; 10(8)2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34439059

RESUMEN

For decades antibiotics have been used in poultry rearing to support high levels of production. Nevertheless, several problems have arisen because of the misuse of antibiotics (i.e., antibiotic resistance, residues in animal products, environmental pollution). Thus, the European Union (EU) as well as the European Food Safety Authority (EFSA) promote action plans to diminish the use of antibiotics in animal production. Alternatives to antibiotics have been studied. Polyphenols (PPs) or organic acids (OAs) seem to be two accredited solutions. Phenolic compounds, such as phenols, flavonoids, and tannins exert their antimicrobial effect with specific mechanisms. In contrast, short chain fatty acids (SCFAs) and medium chain fatty acids (MCFAs), the OAs mainly used as antibiotics alternative, act on the pathogens depending on the pKa value. This review aims to collect the literature reporting the effects of these substances applied as antimicrobial molecules or growth promoter in poultry feeding (both for broilers and laying hens). Organic acids and PPs can be used individually or in blends, exploiting the properties of each component. Collected data highlighted that further research needs to focus on OAs in laying hens' feeding and also determine the right combination in blends with PPs.

8.
Front Microbiol ; 12: 652031, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33995309

RESUMEN

The use of rustic cattle is desirable to face challenges brought on by climate change. Maremmana (MA) and Aubrac (AU) are rustic cattle breeds that can be successfully used for sustainable production. In this study, correlations between two rearing systems (feedlot and grazing) and the rumen microbiota, the lipid composition of rumen liquor (RL), and the growth performance of MA and AU steers were investigated. Bacterial community composition was characterized by high-throughput sequencing of 16S rRNA gene amplicons, and the RL lipid composition was determined by measuring fatty acid (FA) and the dimethyl acetal profiles. The main factor influencing bacterial community composition was the cattle breed. Some bacterial groups were positively correlated to average daily weight gain for the two breeds (i.e., Rikenellaceae RC9 gut group, Fibrobacter and Succiniclasticum in the rumen of MA steers, and Succinivibrionaceae UCG-002 in the rumen of AU steers); despite this, animal performance appeared to be influenced by short chain FAs production pathways and by the presence of H2 sinks that divert the H2 to processes alternative to the methanogenesis.

9.
N Biotechnol ; 53: 41-48, 2019 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-31255711

RESUMEN

Microbial electrochemical technologies (MET) are increasingly being considered for in situ remediation of contaminated groundwater. However, their application potential for the simultaneous treatment of complex mixtures of organic and inorganic contaminants, has been only marginally explored. Here we have analyzed the performance of the 'bioelectric well', a previously developed bioelectrochemical reactor configuration, in the treatment of benzene, toluene, ethyl-benzene and xylenes (BTEX) mixtures. Although to different extents, all BTEX were found to be degraded in the bioelectrochemical system, operated using a continuous-flow of groundwater at a hydraulic retention time of 8.8 h, with the graphite anode potentiostatically controlled at +0.200 V vs. the standard hydrogen electrode. In the case of toluene and ethyl-benzene, biodegradation was further confirmed by the GC-MS identification of fumarate-addition metabolites, previously shown to be involved in the activation of these contaminants under anaerobic conditions. Degradation rates were higher for toluene (31.3 ±â€¯1.5 mg/L d) and lower for benzene (6.1 ±â€¯0.3 mg/L d), ethyl-benzene (3.3 ±â€¯0.1 mg/L d), and xylenes (4.5 ±â€¯0.2 mg/L d). BTEX degradation was linked to electric current generation, with coulombic efficiencies falling in the range 53-69%, although methanogenesis also contributed to contaminant degradation. Remarkably, the system also allowed removal of sulfate simultaneously with toluene. Sulfate removal was likely driven by the hydrogen abiotically generated at the cathode. Taken as a whole, these findings highlight the remarkable potential of this innovative reactor configuration for application in a variety of contamination scenarios.


Asunto(s)
Benceno/metabolismo , Reactores Biológicos , Técnicas Electroquímicas , Agua Subterránea/química , Sulfatos/metabolismo , Tolueno/metabolismo , Contaminantes Químicos del Agua/metabolismo , Xilenos/metabolismo , Benceno/química , Biodegradación Ambiental , Sulfatos/química , Tolueno/química , Contaminantes Químicos del Agua/química , Xilenos/química
10.
Animals (Basel) ; 9(9)2019 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-31492039

RESUMEN

Chestnut tannins (CT) and saturated short medium chain fatty acids (SMCFA) are valid alternatives to contrast the growth of pathogens in poultry rearing, representing a valid alternative to antibiotics. However, the effect of their blends has never been tested. Two blends of CT extract and Sn1-monoglycerides of SMCFA (SN1) were tested in vitro against the proliferation of Clostridium perfringens, Salmonella typhymurium, Escherichia coli, Campylobacter jejuni. The tested concentrations were: 3.0 g/kg of CT; 3.0 g/kg of SN1; 2.0 g/kg of CT and 1.0 g/kg of SN1; 1.0 g/kg of CT and 2.0 g/kg of SN1. Furthermore, their effect on broiler performances and meat quality was evaluated in vivo: one-hundred Ross 308 male birds were fed a basal diet with no supplement (control group) or supplemented with CT or SN1 or their blends at the same concentration used in the in vitro trial. The in vitro assay confirmed the effectiveness of the CT and SN1 mixtures in reducing the growth of the tested bacteria while the in vivo trial showed that broiler performances, animal welfare and meat quality were not negatively affected by the blends, which could be a promising alternative in replacing antibiotics in poultry production.

11.
Microorganisms ; 7(7)2019 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-31323805

RESUMEN

The addition of polyphenol extracts in ruminant diets is an effective strategy to modulate rumen microflora. The aim of this in vitro trial was to study the effects of chestnut tannin extract (CHT), vescalagin (VES) and gallic acid (GAL) on dietary fibre degradability and on the dimethyl acetals (DMA) profile and microbial community composition of rumen liquor. Four diets (basal diet; basal diet plus CHT; basal diet plus VES; basal diet plus GAL) were fermented for 24 h using ewe rumen liquor. At the end of the fermentation, the microbial communities were characterized by sequencing the 16S rRNA gene. The DMA profile was analyzed by gas chromatography. Chestnut tannin extract did not affect fibre degradability, whereas VES and GAL showed a detrimental effect. The presence of CHT, VES and GAL influenced the concentration of several DMA (i.e., 12:0, 13:0, 14:0, 15:0, 18:0 and 18:1 trans-11), whereas the composition of the microbial community was marginally affected. The inclusion of CHT led to the enrichment of the genera Anaerovibrio, Bibersteinia, Escherichia/Shigella, Pseudobutyrivibrio and Streptococcus. The results of this study support the hypothesis that the activity of CHT is due to the synergistic effect of all components rather than the property of a single component.

12.
Microb Biotechnol ; 11(1): 112-118, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28696043

RESUMEN

Groundwater contamination by petroleum hydrocarbons (PHs) is a widespread problem which poses serious environmental and health concerns. Recently, microbial electrochemical technologies (MET) have attracted considerable attention for remediation applications, having the potential to overcome some of the limiting factors of conventional in situ bioremediation systems. So far, field-scale application of MET has been largely hindered by the limited availability of scalable system configurations. Here, we describe the 'bioelectric well' a bioelectrochemical reactor configuration, which can be installed directly within groundwater wells and can be applied for in situ treatment of organic contaminants, such as PHs. A laboratory-scale prototype of the bioelectric well has been set up and operated in continuous-flow regime with phenol as the model contaminant. The best performance was obtained when the system was inoculated with refinery sludge and the anode potentiostatically controlled at +0.2 V versus SHE. Under this condition, the influent phenol (25 mg l-1 ) was nearly completely (99.5 ± 0.4%) removed, with an average degradation rate of 59 ± 3 mg l-1 d and a coulombic efficiency of 104 ± 4%. Microbial community analysis revealed a remarkable enrichment of Geobacter species on the surface of the graphite anode, clearly pointing to a direct involvement of this electro-active bacterium in the current-generating and phenol-oxidizing process.


Asunto(s)
Biodegradación Ambiental , Técnicas Electroquímicas/métodos , Agua Subterránea/química , Hidrocarburos/metabolismo , Contaminantes Químicos del Agua/metabolismo , Purificación del Agua/métodos , Reactores Biológicos/microbiología , Biotransformación , Electrodos/microbiología , Aguas del Alcantarillado/microbiología
13.
FEMS Microbiol Lett ; 365(12)2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29771316

RESUMEN

Bioelectrochemical remediation of hydrocarbons is a technology that exploits the ability of specific microorganisms to use as electron acceptor an electrode, thus potentially lowering the operational costs related to classical bioremediation. Several well-characterized hydrocarbonoclastic strains might be electroactive, thus their biodegradation performances in Bioelectrochemical Systems should be studied. Cupriavidus metallidurans CH34 is a model metal-resistant strain whose capacity to degrade benzene aerobically has recently been described. In this study, toluene degradation under anaerobic conditions and the exoelectrogenic capacity of Cupriavidus metallidurans CH34 were determined. Strain CH34 was grown anaerobically with toluene as sole carbon source in sealed serum bottles and then inoculated in a Microbial Electrolysis Cell (MEC) to assess its exoelectrogenic capacity. It was demonstrated for the first time that strain CH34 is able to degrade toluene under nitrate-reducing conditions (up to 45 mgtoluene/L were removed within 17 days, corresponding to 73% of toluene amended). Nitrate consumption and cellular growth were observed during toluene removal. In the MEC, toluene degradation was linked to current production, showing current peaks after every toluene addition (maximum current density 48 mA/m2). Coulombic efficiency of the toluene biodegradation process increased with time, from 11% (first batch cycle), up to 77% (last batch cycle).


Asunto(s)
Cupriavidus/crecimiento & desarrollo , Cupriavidus/metabolismo , Nitratos/metabolismo , Tolueno/metabolismo , Anaerobiosis , Biodegradación Ambiental
14.
J Hazard Mater ; 360: 498-503, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30145477

RESUMEN

Sulfate reducing microorganisms are typically involved in hydrocarbon biodegradation in the sea sediment, with their metabolism resulting in the by-production of toxic sulfide. In this context, it is of utmost importance identifying the optimal value for anodic potential which ensures efficient toxic sulfide removal. Along this line, in this study the (bio)electrochemical removal of sulfide was tested at anodic potentials of -205 mV, +195 mV and +300 mV (vs Ag/AgCl), also in the presence of a pure culture of the sulfur-oxidizing bacterium Desulfobulbus propionicus. Current production, sulfide concentration and sulfate concentration were monitored over time. At the end of the experiment sulfur deposition on the electrodes and the microbial communities were characterized by SEM-EDS and by next generation sequencing of the 16S rRNA gene respectively. Results confirmed that current production was linked to sulfide removal and D. propionicus promoted back oxidation of deposited sulfur to sulfate. The highest electron recovery was observed at +195 mV vs Ag/AgCl, and the lowest sulfur deposition was obtained at -205 mV vs Ag/AgCl anode polarization.

15.
J Hazard Mater ; 341: 120-127, 2018 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-28772251

RESUMEN

BTEX compounds (Benzene, Toluene, Ethylbenzene and Xylenes) are toxic hydrocarbons that can be found in groundwater due to accidental spills. Bioelectrochemical systems (BES) are an innovative technology to stimulate the anaerobic degradation of hydrocarbons. In this work, single chamber BESs were used to assess the degradation of a BTEX mixture at different applied voltages (0.8V, 1.0V, 1.2V) between the electrodes. Hydrocarbon degradation was linked to current production and to sulfate reduction, at all the tested potentials. The highest current densities (about 200mA/m2 with a maximum peak at 480mA/m2) were observed when 0.8V were applied. The application of an external voltage increased the removal of toluene, m-xylene and p-xylene. The highest removal rate constants at 0.8V were: 0.4±0.1days-1, 0.34±0.09days-1 and 0.16±0.02days-1, respectively. At the end of the experiment, the microbial communities were characterized by high throughput sequencing of the 16S rRNA gene. Microorganisms belonging to the families Desulfobulbaceae, Desulfuromonadaceae and Geobacteraceae were enriched on the anodes suggesting that both direct electron transfer and sulfur cycling occurred. The cathodic communities were dominated by the family Desulfomicrobiaceae that may be involved in hydrogen production.


Asunto(s)
Bacterias/metabolismo , Derivados del Benceno , Benceno , Tolueno , Contaminantes Químicos del Agua , Xilenos , Bacterias/genética , Benceno/química , Benceno/metabolismo , Derivados del Benceno/química , Derivados del Benceno/metabolismo , Biodegradación Ambiental , Técnicas Electroquímicas , Electrodos/microbiología , Oxidación-Reducción , ARN Ribosómico 16S/genética , Tolueno/química , Tolueno/metabolismo , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/metabolismo , Xilenos/química , Xilenos/metabolismo
16.
Water Res ; 114: 351-370, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28279880

RESUMEN

Annually, thousands of oil spills occur across the globe. As a result, petroleum substances and petrochemical compounds are widespread contaminants causing concern due to their toxicity and recalcitrance. Many remediation strategies have been developed using both physicochemical and biological approaches. Biological strategies are most benign, aiming to enhance microbial metabolic activities by supplying limiting inorganic nutrients, electron acceptors or donors, thus stimulating oxidation or reduction of contaminants. A key issue is controlling the supply of electron donors/acceptors. Bioelectrochemical systems (BES) have emerged, in which an electrical current serves as either electron donor or acceptor for oil spill bioremediation. BES are highly controllable and can possibly also serve as biosensors for real time monitoring of the degradation process. Despite being promising, multiple aspects need to be considered to make BES suitable for field applications including system design, electrode materials, operational parameters, mode of action and radius of influence. The microbiological processes, involved in bioelectrochemical contaminant degradation, are currently not fully understood, particularly in relation to electron transfer mechanisms. Especially in sulfate rich environments, the sulfur cycle appears pivotal during hydrocarbon oxidation. This review provides a comprehensive analysis of the research on bioelectrochemical remediation of oil spills and of the key parameters involved in the process.


Asunto(s)
Contaminación por Petróleo , Petróleo , Biodegradación Ambiental , Electrodos , Hidrocarburos
17.
Front Microbiol ; 7: 1836, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27917161

RESUMEN

Widespread pollution of terrestrial ecosystems with petroleum hydrocarbons (PHCs) has generated a need for remediation and, given that many PHCs are biodegradable, bio- and phyto-remediation are often viable approaches for active and passive remediation. This review focuses on phytoremediation with particular interest on the interactions between and use of plant-associated bacteria to restore PHC polluted sites. Plant-associated bacteria include endophytic, phyllospheric, and rhizospheric bacteria, and cooperation between these bacteria and their host plants allows for greater plant survivability and treatment outcomes in contaminated sites. Bacterially driven PHC bioremediation is attributed to the presence of diverse suites of metabolic genes for aliphatic and aromatic hydrocarbons, along with a broader suite of physiological properties including biosurfactant production, biofilm formation, chemotaxis to hydrocarbons, and flexibility in cell-surface hydrophobicity. In soils impacted by PHC contamination, microbial bioremediation generally relies on the addition of high-energy electron acceptors (e.g., oxygen) and fertilization to supply limiting nutrients (e.g., nitrogen, phosphorous, potassium) in the face of excess PHC carbon. As an alternative, the addition of plants can greatly improve bioremediation rates and outcomes as plants provide microbial habitats, improve soil porosity (thereby increasing mass transfer of substrates and electron acceptors), and exchange limiting nutrients with their microbial counterparts. In return, plant-associated microorganisms improve plant growth by reducing soil toxicity through contaminant removal, producing plant growth promoting metabolites, liberating sequestered plant nutrients from soil, fixing nitrogen, and more generally establishing the foundations of soil nutrient cycling. In a practical and applied sense, the collective action of plants and their associated microorganisms is advantageous for remediation of PHC contaminated soil in terms of overall cost and success rates for in situ implementation in a diversity of environments. Mechanistically, there remain biological unknowns that present challenges for applying bio- and phyto-remediation technologies without having a deep prior understanding of individual target sites. In this review, evidence from traditional and modern omics technologies is discussed to provide a framework for plant-microbe interactions during PHC remediation. The potential for integrating multiple molecular and computational techniques to evaluate linkages between microbial communities, plant communities and ecosystem processes is explored with an eye on improving phytoremediation of PHC contaminated sites.

18.
N Biotechnol ; 32(1): 79-84, 2015 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-25291711

RESUMEN

Microbial fuel cells (MFCs) are a rapidly growing technology for energy production from wastewater and biomasses. In a MFC, a microbial biofilm oxidizes organic matter and transfers electrons from reduced compounds to an anode as the electron acceptor by extracellular electron transfer (EET). The aim of this work was to characterize the microbial communities operating in a Single Chamber Microbial Fuel Cell (SCMFC) fed with acetate and inoculated with a biogas digestate in order to gain more insight into anodic and cathodic EET. Taxonomic characterization of the communities was carried out by Illumina sequencing of a fragment of the 16S rRNA gene. Microorganisms belonging to Geovibrio genus and purple non-sulfur (PNS) bacteria were found to be dominant in the anodic biofilm. The alkaliphilic genus Nitrincola and anaerobic microorganisms belonging to Porphyromonadaceae family were the most abundant bacteria in the cathodic biofilm.


Asunto(s)
Bacterias/crecimiento & desarrollo , Fuentes de Energía Bioeléctrica/microbiología , Bacterias/clasificación , Bacterias/genética , Secuencia de Bases , Teorema de Bayes , Electricidad , Electrodos
19.
Genome Announc ; 3(1)2015 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-25657268

RESUMEN

We report the 3.7-Mb draft genome of Acinetobacter oleivorans strain PF1, a hydrocarbonoclastic Gram-negative bacterium in the class Gammaproteobacteria, isolated from poplar trees growing on a diesel-contaminated plume at the Ford Motor Company site in Genk, Belgium. Strain PF1 is a potent plant-growth promoter, useful for diesel fuel phytoremediation applications.

20.
Chemosphere ; 130: 34-9, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25747304

RESUMEN

BTEX compounds (benzene, toluene, ethylbenzene and xylenes) and methyl tert-butyl ether (MTBE) are some of the main constituents of gasoline and can be accidentally released in the environment. In this work the effect of bioaugmentation on the microbial communities in a bench scale aerobic biobarrier for gasoline contaminated water treatment was studied by 16S rRNA gene sequencing. Catabolic genes (tmoA and xylM) were quantified by qPCR, in order to estimate the biodegradation potential, and the abundance of total bacteria was estimated by the quantification of the number of copies of the 16S rRNA gene. Hydrocarbon concentration was monitored over time and no difference in the removal efficiency for the tested conditions was observed, either with or without the microbial inoculum. In the column without the inoculum the most abundant genera were Acidovorax, Bdellovibrio, Hydrogenophaga, Pseudoxanthomonas and Serpens at the beginning of the column, while at the end of the column Thauera became dominant. In the inoculated test the microbial inoculum, composed by Rhodococcus sp. CE461, Rhodococcus sp. CT451 and Methylibium petroleiphilum LMG 22953, was outcompeted. Quantitative PCR results showed an increasing in xylM copy number, indicating that hydrocarbon degrading bacteria were selected during the treatment, although only a low increase of the total biomass was observed. However, the bioaugmentation did not lead to an increase in the degradative potential of the microbial communities.


Asunto(s)
Biodegradación Ambiental , Gasolina/análisis , Agua Subterránea/análisis , Hidrocarburos/metabolismo , Contaminantes Químicos del Agua/análisis , Benceno/análisis , Micrococcus/genética , Micrococcus/metabolismo , Análisis de Componente Principal , ARN Ribosómico 16S/genética , Rhodococcus/genética , Rhodococcus/metabolismo , Tolueno/análisis , Purificación del Agua/métodos , Xilenos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA