Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chembiochem ; 18(24): 2428-2440, 2017 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-29024281

RESUMEN

Glycan microarrays are useful tools for lectin glycan profiling. The use of a glycan microarray based on evanescent-field fluorescence detection was herein further extended to the screening of lectin inhibitors in competitive experiments. The efficacy of this approach was tested with 2/3'-mono- and 2,3'-diaromatic type II lactosamine derivatives and galectins as targets and was validated by comparison with fluorescence anisotropy proposed as an orthogonal protein interaction measurement technique. We showed that subtle differences in the architecture of the inhibitor could be sensed that pointed out the preference of galectin-3 for 2'-arylamido derivatives over ureas, thioureas, and amines and that of galectin-7 for derivatives bearing an α substituent at the anomeric position of glucosamine. We eventually identified a diaromatic oxazoline as a highly specific inhibitor of galectin-3 versus galectin-1 and galectin-7.


Asunto(s)
Galectinas/antagonistas & inhibidores , Análisis por Micromatrices , Amino Azúcares , Animales , Polarización de Fluorescencia , Galectina 3/antagonistas & inhibidores , Humanos , Oxazoles/química , Sensibilidad y Especificidad
2.
Org Biomol Chem ; 15(45): 9653-9669, 2017 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-29116283

RESUMEN

Proteoglycans (PGs) are complex macromolecules that are composed of glycosaminoglycan (GAG) chains covalently attached to a core protein through a tetrasaccharide linker. The biosynthesis of PGs is complex and involves a large number of glycosyltranferases. Here we present a structure-activity study of human ß4GalT7, which transfers the first Gal residue onto a xyloside moiety of the linkage region. An efficient and regiocontrolled synthesis of a library of modified analogs of 4-methylumbelliferyl xyloside (XylMU) is reported herein. Hydroxyl groups at the position C-2, C-3 or C-4 have been epimerized and/or replaced by a hydrogen or a fluorine, while the anomeric oxygen was replaced by either a sulfur or a sulfone. The effect of these compounds on human ß4GalT7 activity in vitro and on GAG biosynthesis in cellulo was then evaluated.


Asunto(s)
Galactosiltransferasas/metabolismo , Glicósidos/biosíntesis , Bibliotecas de Moléculas Pequeñas/metabolismo , Conformación de Carbohidratos , Glicósidos/química , Humanos , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad
3.
J Biol Chem ; 290(12): 7658-70, 2015 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-25568325

RESUMEN

Among glycosaminoglycan (GAG) biosynthetic enzymes, the human ß1,4-galactosyltransferase 7 (hß4GalT7) is characterized by its unique capacity to take over xyloside derivatives linked to a hydrophobic aglycone as substrates and/or inhibitors. This glycosyltransferase is thus a prime target for the development of regulators of GAG synthesis in therapeutics. Here, we report the structure-guided design of hß4GalT7 inhibitors. By combining molecular modeling, in vitro mutagenesis, and kinetic measurements, and in cellulo analysis of GAG anabolism and decorin glycosylation, we mapped the organization of the acceptor binding pocket, in complex with 4-methylumbelliferone-xylopyranoside as prototype substrate. We show that its organization is governed, on one side, by three tyrosine residues, Tyr(194), Tyr(196), and Tyr(199), which create a hydrophobic environment and provide stacking interactions with both xylopyranoside and aglycone rings. On the opposite side, a hydrogen-bond network is established between the charged amino acids Asp(228), Asp(229), and Arg(226), and the hydroxyl groups of xylose. We identified two key structural features, i.e. the strategic position of Tyr(194) forming stacking interactions with the aglycone, and the hydrogen bond between the His(195) nitrogen backbone and the carbonyl group of the coumarinyl molecule to develop a tight binder of hß4GalT7. This led to the synthesis of 4-deoxy-4-fluoroxylose linked to 4-methylumbelliferone that inhibited hß4GalT7 activity in vitro with a Ki 10 times lower than the Km value and efficiently impaired GAG synthesis in a cell assay. This study provides a valuable probe for the investigation of GAG biology and opens avenues toward the development of bioactive compounds to correct GAG synthesis disorders implicated in different types of malignancies.


Asunto(s)
Inhibidores Enzimáticos/química , Galactosiltransferasas/metabolismo , Xilosidasas/antagonistas & inhibidores , Dominio Catalítico , Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Galactosiltransferasas/química , Humanos , Cinética , Modelos Moleculares , Sondas Moleculares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA