Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Brain ; 142(1): 59-69, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30561534

RESUMEN

Kufs disease is the major adult form of neuronal ceroid lipofuscinosis, but is rare and difficult to diagnose. Diagnosis was traditionally dependent on the demonstration of characteristic storage material, but distinction from normal age-related accumulation of lipofuscin can be challenging. Mutation of CLN6 has emerged as the most important cause of recessive Kufs disease but, remarkably, is also responsible for variant late infantile ceroid lipofuscinosis. Here we provide a detailed description of Kufs disease due to CLN6 pathogenic variants. We studied 20 cases of Kufs disease with CLN6 pathogenic variants from 13 unrelated families. Mean age of onset was 28 years (range 12-51) with bimodal peaks in teenage and early adult life. The typical presentation was of progressive myoclonus epilepsy with debilitating myoclonic seizures and relatively infrequent tonic-clonic seizures. Patients became wheelchair-bound with a mean 12 years post-onset. Ataxia was the most prominent motor feature. Dementia appeared to be an invariable accompaniment, although it could take a number of years to manifest and occasionally cognitive impairment preceded myoclonic seizures. Patients were usually highly photosensitive on EEG. MRI showed progressive cerebral and cerebellar atrophy. The median survival time was 26 years from disease onset. Ultrastructural examination of the pathology revealed fingerprint profiles as the characteristic inclusions, but they were not reliably seen in tissues other than brain. Curvilinear profiles, which are seen in the late infantile form, were not a feature. Of the 13 unrelated families we observed homozygous CLN6 pathogenic variants in four and compound heterozygous variants in nine. Compared to the variant late infantile form, there was a lower proportion of variants that predicted protein truncation. Certain heterozygous missense variants in the same amino acid position were found in both variant late infantile and Kufs disease. There was a predominance of cases from Italy and surrounding regions; this was partially explained by the discovery of three founder pathogenic variants. Clinical distinction of type A (progressive myoclonus epilepsy) and type B (dementia with motor disturbance) Kufs disease was supported by molecular diagnoses. Type A is usually caused by recessive pathogenic variants in CLN6 or dominant variants in DNAJC5. Type B Kufs is usually associated with recessive CTSF pathogenic variants. The diagnosis of Kufs remains challenging but, with the availability of genetic diagnosis, this will largely supersede the use of diagnostic biopsies, particularly as biopsies of peripheral tissues has unsatisfactory sensitivity and specificity.


Asunto(s)
Proteínas de la Membrana/genética , Lipofuscinosis Ceroideas Neuronales/diagnóstico , Lipofuscinosis Ceroideas Neuronales/genética , Adolescente , Adulto , Edad de Inicio , Anciano , Encéfalo/ultraestructura , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación , Lipofuscinosis Ceroideas Neuronales/diagnóstico por imagen , Lipofuscinosis Ceroideas Neuronales/patología , Tasa de Supervivencia , Adulto Joven
2.
Hum Mol Genet ; 24(16): 4483-90, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-25954030

RESUMEN

We studied a consanguineous Palestinian Arab family segregating an autosomal recessive progressive myoclonus epilepsy (PME) with early ataxia. PME is a rare, often fatal syndrome, initially responsive to antiepileptic drugs which over time becomes refractory and can be associated with cognitive decline. Linkage analysis was performed and the disease locus narrowed to chromosome 19p13.3. Fourteen candidate genes were screened by conventional Sanger sequencing and in one, LMNB2, a novel homozygous missense mutation was identified that segregated with the PME in the family. Whole exome sequencing excluded other likely pathogenic coding variants in the linked interval. The p.His157Tyr mutation is located in an evolutionarily highly conserved region of the alpha-helical rod of the lamin B2 protein. In vitro assembly analysis of mutant lamin B2 protein revealed a distinct defect in the assembly of the highly ordered fibrous arrays typically formed by wild-type lamin B2. Our data suggests that disruption of the organisation of the nuclear lamina in neurons, perhaps through abnormal neuronal migration, causes the epilepsy and early ataxia syndrome and extends the aetiology of PMEs to include dysfunction in nuclear lamin proteins.


Asunto(s)
Ataxia/genética , Cromosomas Humanos Par 19/genética , Epilepsias Mioclónicas/genética , Lamina Tipo B/genética , Mutación Missense , Sustitución de Aminoácidos , Niño , Familia , Femenino , Humanos , Masculino
3.
Hum Mol Genet ; 23(22): 6069-80, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24939913

RESUMEN

Rolandic epilepsy (RE) is the most common idiopathic focal childhood epilepsy. Its molecular basis is largely unknown and a complex genetic etiology is assumed in the majority of affected individuals. The present study tested whether six large recurrent copy number variants at 1q21, 15q11.2, 15q13.3, 16p11.2, 16p13.11 and 22q11.2 previously associated with neurodevelopmental disorders also increase risk of RE. Our association analyses revealed a significant excess of the 600 kb genomic duplication at the 16p11.2 locus (chr16: 29.5-30.1 Mb) in 393 unrelated patients with typical (n = 339) and atypical (ARE; n = 54) RE compared with the prevalence in 65,046 European population controls (5/393 cases versus 32/65,046 controls; Fisher's exact test P = 2.83 × 10(-6), odds ratio = 26.2, 95% confidence interval: 7.9-68.2). In contrast, the 16p11.2 duplication was not detected in 1738 European epilepsy patients with either temporal lobe epilepsy (n = 330) and genetic generalized epilepsies (n = 1408), suggesting a selective enrichment of the 16p11.2 duplication in idiopathic focal childhood epilepsies (Fisher's exact test P = 2.1 × 10(-4)). In a subsequent screen among children carrying the 16p11.2 600 kb rearrangement we identified three patients with RE-spectrum epilepsies in 117 duplication carriers (2.6%) but none in 202 carriers of the reciprocal deletion. Our results suggest that the 16p11.2 duplication represents a significant genetic risk factor for typical and atypical RE.


Asunto(s)
Duplicación Cromosómica , Cromosomas Humanos Par 16/genética , Epilepsia Rolándica/genética , Niño , Preescolar , Cromosomas Humanos Par 1/genética , Cromosomas Humanos Par 15/genética , Cromosomas Humanos Par 22/genética , Variaciones en el Número de Copia de ADN , Femenino , Humanos , Lactante , Masculino , Polimorfismo de Nucleótido Simple
4.
Hum Mol Genet ; 22(7): 1417-23, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23297359

RESUMEN

Kufs disease, an adult-onset neuronal ceroid lipofuscinosis, is challenging to diagnose and genetically heterogeneous. Mutations in CLN6 were recently identified in recessive Kufs disease presenting as progressive myoclonus epilepsy (Type A), whereas the molecular basis of cases presenting with dementia and motor features (Type B) is unknown. We performed genome-wide linkage mapping of two families with recessive Type B Kufs disease and identified a single region on chromosome 11 to which both families showed linkage. Exome sequencing of five samples from the two families identified homozygous and compound heterozygous missense mutations in CTSF within this linkage region. We subsequently sequenced CTSF in 22 unrelated individuals with suspected recessive Kufs disease, and identified an additional patient with compound heterozygous mutations. CTSF encodes cathepsin F, a lysosomal cysteine protease, dysfunction of which is a highly plausible candidate mechanism for a storage disorder like ceroid lipofuscinosis. In silico modeling suggested the missense mutations would alter protein structure and function. Moreover, re-examination of a previously published mouse knockout of Ctsf shows that it recapitulates the light and electron-microscopic pathological features of Kufs disease. Although CTSF mutations account for a minority of cases of type B Kufs, CTSF screening should be considered in cases with early-onset dementia and may avoid the need for invasive biopsies.


Asunto(s)
Catepsina F/genética , Mutación Missense , Lipofuscinosis Ceroideas Neuronales/genética , Adulto , Animales , Células del Asta Anterior/patología , Estudios de Casos y Controles , Catepsina F/metabolismo , Mapeo Cromosómico , Consanguinidad , Análisis Mutacional de ADN , Exoma , Femenino , Estudios de Asociación Genética , Humanos , Escala de Lod , Ratones , Ratones Noqueados , Persona de Mediana Edad , Modelos Moleculares , Lipofuscinosis Ceroideas Neuronales/enzimología , Lipofuscinosis Ceroideas Neuronales/patología , Linaje , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Análisis de Secuencia de ARN
5.
Am J Hum Genet ; 90(6): 1102-7, 2012 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-22608501

RESUMEN

We performed hypothesis-free linkage analysis and exome sequencing in a family with two siblings who had neuronal ceroid lipofuscinosis (NCL). Two linkage peaks with maximum LOD scores of 3.07 and 2.97 were found on chromosomes 7 and 17, respectively. Unexpectedly, we found these siblings to be homozygous for a c.813_816del (p.Thr272Serfs∗10) mutation in the progranulin gene (GRN, granulin precursor) in the latter peak. Heterozygous mutations in GRN are a major cause of frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP), the second most common early-onset dementia. Reexamination of progranulin-deficient mice revealed rectilinear profiles typical of NCL. The age-at-onset and neuropathology of FTLD-TDP and NCL are markedly different. Our findings reveal an unanticipated link between a rare and a common neurological disorder and illustrate pleiotropic effects of a mutation in the heterozygous or homozygous states.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/genética , Mutación , Animales , Mapeo Cromosómico , Análisis Mutacional de ADN , Demencia/genética , Salud de la Familia , Femenino , Ligamiento Genético , Heterocigoto , Homocigoto , Humanos , Escala de Lod , Masculino , Ratones , Linaje , Fenotipo , Progranulinas
6.
Ann Neurol ; 74(3): 496-501, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23686771

RESUMEN

We identified a small family with autosomal recessive, infantile onset epilepsy and intellectual disability. Exome sequencing identified a homozygous missense variant in the gene TNK2, encoding a brain-expressed tyrosine kinase. Sequencing of the coding region of TNK2 in 110 patients with a similar phenotype failed to detect further homozygote or compound heterozygote mutations. Pathogenicity of the variant is supported by the results of our functional studies, which demonstrated that the variant abolishes NEDD4 binding to TNK2, preventing its degradation after epidermal growth factor stimulation. Definitive proof of pathogenicity will require confirmation in unrelated patients.


Asunto(s)
Epilepsia/genética , Proteínas Tirosina Quinasas/genética , Preescolar , Femenino , Genotipo , Humanos , Lactante , Masculino , Mutación , Mutación Missense , Linaje , Análisis de Secuencia de ADN
7.
Epilepsia ; 55(2): e18-21, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24483274

RESUMEN

The availability of glucose, and its glycolytic product lactate, for cerebral energy metabolism is regulated by specific brain transporters. Inadequate energy delivery leads to neurologic impairment. Haploinsufficiency of the glucose transporter GLUT1 causes a characteristic early onset encephalopathy, and has recently emerged as an important cause of a variety of childhood or later-onset generalized epilepsies and paroxysmal exercise-induced dyskinesia. We explored whether mutations in the genes encoding the other major glucose (GLUT3) or lactate (MCT1/2/3/4) transporters involved in cerebral energy metabolism also cause generalized epilepsies. A cohort of 119 cases with myoclonic astatic epilepsy or early onset absence epilepsy was screened for nucleotide variants in these five candidate genes. No epilepsy-causing mutations were identified, indicating that of the major energetic fuel transporters in the brain, only GLUT1 is clearly associated with generalized epilepsy.


Asunto(s)
Epilepsia/genética , Epilepsia/metabolismo , Variación Genética/genética , Transportador de Glucosa de Tipo 1/fisiología , Glucosa/metabolismo , Mutación/genética , Niño , Preescolar , Estudios de Cohortes , Metabolismo Energético/fisiología , Epilepsia/diagnóstico , Femenino , Humanos , Lactante , Masculino
8.
Brain ; 136(Pt 10): 3140-50, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24014518

RESUMEN

Epilepsy comprises several syndromes, amongst the most common being mesial temporal lobe epilepsy with hippocampal sclerosis. Seizures in mesial temporal lobe epilepsy with hippocampal sclerosis are typically drug-resistant, and mesial temporal lobe epilepsy with hippocampal sclerosis is frequently associated with important co-morbidities, mandating the search for better understanding and treatment. The cause of mesial temporal lobe epilepsy with hippocampal sclerosis is unknown, but there is an association with childhood febrile seizures. Several rarer epilepsies featuring febrile seizures are caused by mutations in SCN1A, which encodes a brain-expressed sodium channel subunit targeted by many anti-epileptic drugs. We undertook a genome-wide association study in 1018 people with mesial temporal lobe epilepsy with hippocampal sclerosis and 7552 control subjects, with validation in an independent sample set comprising 959 people with mesial temporal lobe epilepsy with hippocampal sclerosis and 3591 control subjects. To dissect out variants related to a history of febrile seizures, we tested cases with mesial temporal lobe epilepsy with hippocampal sclerosis with (overall n = 757) and without (overall n = 803) a history of febrile seizures. Meta-analysis revealed a genome-wide significant association for mesial temporal lobe epilepsy with hippocampal sclerosis with febrile seizures at the sodium channel gene cluster on chromosome 2q24.3 [rs7587026, within an intron of the SCN1A gene, P = 3.36 × 10(-9), odds ratio (A) = 1.42, 95% confidence interval: 1.26-1.59]. In a cohort of 172 individuals with febrile seizures, who did not develop epilepsy during prospective follow-up to age 13 years, and 6456 controls, no association was found for rs7587026 and febrile seizures. These findings suggest SCN1A involvement in a common epilepsy syndrome, give new direction to biological understanding of mesial temporal lobe epilepsy with hippocampal sclerosis with febrile seizures, and open avenues for investigation of prognostic factors and possible prevention of epilepsy in some children with febrile seizures.


Asunto(s)
Epilepsia del Lóbulo Temporal/genética , Mutación/genética , Canal de Sodio Activado por Voltaje NAV1.1/genética , Esclerosis/genética , Convulsiones Febriles/genética , Epilepsia del Lóbulo Temporal/etiología , Estudio de Asociación del Genoma Completo/métodos , Hipocampo/patología , Humanos , Estudios Prospectivos , Convulsiones Febriles/diagnóstico , Lóbulo Temporal/patología
9.
J Med Genet ; 50(5): 271-9, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23468209

RESUMEN

Recent advances in molecular genetics have translated into the increasing utilisation of genetic testing in the routine clinical practice of neurologists. There has been a steady, incremental increase in understanding the genetic variation associated with epilepsies. Genetic testing in the epilepsies is not yet widely practiced, but the advent of new screening technologies promises to exponentially expand both knowledge and clinical utility. To maximise the value of this new genetic insight we need to rapidly extrapolate genetic findings to inform patients of their diagnosis, prognosis, recurrence risk and the clinical management options available for their specific genetic condition. Comprehensive, highly specific and sensitive genetic test results improve the management of patients by neurologists and clinical geneticists. Here we discuss the latest developments in clinical genetic testing for epilepsy and describe new molecular genetics platforms that will transform both genetic screening and novel gene discovery.


Asunto(s)
Epilepsia/genética , Predisposición Genética a la Enfermedad/genética , Pruebas Genéticas/tendencias , Variación Genética , Biología Molecular/tendencias , Variaciones en el Número de Copia de ADN , Pruebas Genéticas/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Biología Molecular/métodos , Herencia Multifactorial/genética , Mutación/genética
10.
Am J Pathol ; 180(4): 1560-9, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22330676

RESUMEN

We report the identification of three new mouse models, baringo, nice, and stitch, with recessively inherited sensorineural deafness due to novel mutations in the transmembrane channel-like gene 1 (Tmc1). These strains were generated by N-ethyl-N-nitrosourea mutagenesis. DNA sequence analysis revealed changes in c.545A>G, c.1345T>C, and c.1661G>T, causing p.Y182C, p.Y449H, and p.W554L amino acid substitutions in baringo, nice, and stitch mutants, respectively. The mutations affect amino acid residues that are evolutionarily conserved across species. Similar to the previously reported Beethoven Tmc1 mutant, both p.Y182C and p.W554L are located outside a predicted transmembrane domain, whereas the p.Y449H mutation resides in the predicted transmembrane domain 4. Homozygous stitch-mutant mice have severe hearing loss at the age of 4 weeks and are deaf by the age of 8 weeks, whereas both baringo and nice mutants are profoundly deaf at the age of 4 weeks. None of the strains displays signs of vestibular dysfunction. Scanning electron microscopy revealed degeneration of outer hair cells in the basal region of baringo, nice, and stitch mutants. Immunolocalization studies revealed expression of TMC1 protein in the hair cells, spiral ganglion neurons, supporting cells, and stria ligament in the inner ear. Reduced levels of TMC1 protein were observed in the spiral ligament of mutants when compared with wild-type animals. These three allelic mutants provide valuable models for studying nonsyndromic recessive sensorineural hearing loss (DFNB7/11) in humans.


Asunto(s)
Pérdida Auditiva Sensorineural/genética , Proteínas de la Membrana/genética , Mutación Puntual , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Cóclea/crecimiento & desarrollo , Cóclea/metabolismo , Cóclea/ultraestructura , Análisis Mutacional de ADN/métodos , Modelos Animales de Enfermedad , Genes Recesivos , Células Ciliadas Auditivas Externas/metabolismo , Células Ciliadas Auditivas Externas/ultraestructura , Pérdida Auditiva Sensorineural/metabolismo , Pérdida Auditiva Sensorineural/patología , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Microscopía Electrónica de Rastreo , Datos de Secuencia Molecular , Mutagénesis , Alineación de Secuencia , Especificidad de la Especie
11.
Am J Pathol ; 179(2): 903-14, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21689626

RESUMEN

Mutations in the human cadherin 23 (CDH23) gene cause deafness, neurosensory, autosomal recessive 12 (DFNB12) nonsyndromic hearing loss or Usher syndrome, type 1D (characterized by hearing impairment, vestibular dysfunction, and visual impairment). Reported waltzer mouse strains each harbor a Cdh23-null mutation and present with hearing loss and vestibular dysfunction. Two additional Cdh23 mouse mutants, salsa and erlong, each carry a homozygous Cdh23 missense mutation and have progressive hearing loss. We report the identification of a novel mouse strain, jera, with inherited hearing loss caused by an N-ethyl-N-nitrosourea-induced c.7079T>A mutation in the Cdh23 gene. The mutation generates a missense change, p.V2360E, in Cdh23. Affected mice have profound sensorineural deafness, with no vestibular dysfunction. The p.V2360E mutation is semidominant because heterozygous mice have milder and more progressive hearing loss in advanced age. The mutation affects a highly conserved Ca(2+)-binding motif in extracellular domain 22, thought to be important for Cdh23 structure and dimerization. Molecular modeling suggests that the Cdh23(V2360E/V2360E) mutation alters the structural conformation of the protein and affects Ca(2+)-binding properties. Similar to salsa mice, but in contrast to waltzer mice, hair bundle development is normal in jera and hearing loss appears to be due to the loss of tip links. Thus, jera is a novel mouse model for DFNB12.


Asunto(s)
Cadherinas/fisiología , Pérdida Auditiva Sensorineural/genética , Mutación , Enfermedades Vestibulares/patología , Alelos , Secuencia de Aminoácidos , Animales , Cadherinas/química , Cadherinas/genética , Análisis Mutacional de ADN , Etilnitrosourea/farmacología , Audición , Pérdida Auditiva Sensorineural/congénito , Humanos , Ratones , Ratones Transgénicos , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Homología de Secuencia de Aminoácido , Enfermedades Vestibulares/genética , Vestíbulo del Laberinto/patología
12.
Epilepsia ; 53(12): e204-7, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23106342

RESUMEN

Glucose transporter 1 (GLUT1) deficiency caused by mutations of SLC2A1 is an increasingly recognized cause of genetic generalized epilepsy. We previously reported that >10% (4 of 34) of a cohort with early onset absence epilepsy (EOAE) had GLUT1 deficiency. This study uses a new cohort of 55 patients with EOAE to confirm that finding. Patients with typical absence seizures beginning before 4 years of age were screened for solute carrier family 2 (facilitated glucose transporter), member 1 (SLC2A1) mutations or deletions. All had generalized spike-waves on electroencephalography (EEG). Those with tonic and/or atonic seizures were excluded. Mutations were found in 7 (13%) of 55 cases, including five missense mutations, an in-frame deletion leading to loss of a single amino acid, and a deletion spanning two exons. Over both studies, 11 (12%) of 89 probands with EOAE have GLUT1 deficiency. Given the major treatment and genetic counseling implications, this study confirms that SLC2A1 mutational analysis should be strongly considered in EOAE.


Asunto(s)
Errores Innatos del Metabolismo de los Carbohidratos/complicaciones , Epilepsia Tipo Ausencia/etiología , Epilepsia Tipo Ausencia/genética , Mutación/genética , Adolescente , Adulto , Animales , Niño , Preescolar , Estudios de Cohortes , Análisis Mutacional de ADN , Evolución Molecular , Femenino , Transportador de Glucosa de Tipo 1/genética , Humanos , Masculino , Proteínas de Transporte de Monosacáridos/deficiencia
13.
Am J Hum Genet ; 83(4): 468-78, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18940309

RESUMEN

Complex I (NADH:ubiquinone oxidoreductase) is the first and largest multimeric complex of the mitochondrial respiratory chain. Human complex I comprises seven subunits encoded by mitochondrial DNA and 38 nuclear-encoded subunits that are assembled together in a process that is only partially understood. To date, mutations causing complex I deficiency have been described in all 14 core subunits, five supernumerary subunits, and four assembly factors. We describe complex I deficiency caused by mutation of the putative complex I assembly factor C20orf7. A candidate region for a lethal neonatal form of complex I deficiency was identified by homozygosity mapping of an Egyptian family with one affected child and two affected pregnancies predicted by enzyme-based prenatal diagnosis. The region was confirmed by microcell-mediated chromosome transfer, and 11 candidate genes encoding potential mitochondrial proteins were sequenced. A homozygous missense mutation in C20orf7 segregated with disease in the family. We show that C20orf7 is peripherally associated with the matrix face of the mitochondrial inner membrane and that silencing its expression with RNAi decreases complex I activity. C20orf7 patient fibroblasts showed an almost complete absence of complex I holoenzyme and were defective at an early stage of complex I assembly, but in a manner distinct from the assembly defects caused by mutations in the assembly factor NDUFAF1. Our results indicate that C20orf7 is crucial in the assembly of complex I and that mutations in C20orf7 cause mitochondrial disease.


Asunto(s)
Metiltransferasas/genética , Enfermedades Mitocondriales/genética , Mutación , Biología Computacional/métodos , Análisis Mutacional de ADN , Complejo I de Transporte de Electrón/metabolismo , Femenino , Marcadores Genéticos , Homocigoto , Humanos , Membranas Intracelulares/metabolismo , Masculino , Metiltransferasas/fisiología , Proteínas Mitocondriales , Modelos Genéticos , Mutación Missense , Linaje , Interferencia de ARN
14.
Mol Ther ; 16(2): 224-236, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28178538

RESUMEN

Development of effective therapeutics for hearing loss has proven to be a slow and difficult process, evidenced by the lack of restorative medicines and technologies currently available to the otolaryngologist. In large part this is attributable to the limited regenerative potential in cochlear cells and the secondary degeneration of the cochlear architecture that commonly follows sensorineural hearing impairment. Therapeutic advances have been made using animal models, particularly in regeneration and remodeling of spiral ganglion neurons, which retract and die following hair cell loss. Natural regeneration in avian and reptilian systems provides hope that replacement of hair cells is achievable in humans. The most exciting recent advancements in this field have been made in the relatively new areas of cellular replacement and gene therapy. In this review we discuss recent developments in gene- and cell-based therapy for hearing loss, including detailed analysis of therapeutic mechanisms such as RNA interference and stem cell transplantation, as well as in utero delivery to the mammalian inner ear. We explore the advantages and limitations associated with the use of these strategies for inner ear restoration.

15.
Mol Ther ; 16(2): 224-36, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18223547

RESUMEN

Development of effective therapeutics for hearing loss has proven to be a slow and difficult process, evidenced by the lack of restorative medicines and technologies currently available to the otolaryngologist. In large part this is attributable to the limited regenerative potential in cochlear cells and the secondary degeneration of the cochlear architecture that commonly follows sensorineural hearing impairment. Therapeutic advances have been made using animal models, particularly in regeneration and remodeling of spiral ganglion neurons, which retract and die following hair cell loss. Natural regeneration in avian and reptilian systems provides hope that replacement of hair cells is achievable in humans. The most exciting recent advancements in this field have been made in the relatively new areas of cellular replacement and gene therapy. In this review we discuss recent developments in gene- and cell-based therapy for hearing loss, including detailed analysis of therapeutic mechanisms such as RNA interference and stem cell transplantation, as well as in utero delivery to the mammalian inner ear. We explore the advantages and limitations associated with the use of these strategies for inner ear restoration.


Asunto(s)
Modelos Animales de Enfermedad , Pérdida Auditiva/terapia , Animales , Terapia Genética/métodos , Pérdida Auditiva/genética , Pérdida Auditiva/patología , Humanos , Modelos Teóricos , Interferencia de ARN , Trasplante de Células Madre/métodos
16.
J Clin Invest ; 114(6): 837-45, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15372108

RESUMEN

complex I deficiency, the most common respiratory chain defect, is genetically heterogeneous: mutations in 8 nuclear and 7 mitochondrial DNA genes encoding complex I subunits have been described. However, these genes account for disease in only a minority of complex I-deficient patients. We investigated whether there may be an unknown common gene by performing functional complementation analysis of cell lines from 10 unrelated patients. Two of the patients were found to have mitochondrial DNA mutations. The other 8 represented 7 different (nuclear) complementation groups, all but 1 of which showed abnormalities of complex I assembly. It is thus unlikely that any one unknown gene accounts for a large proportion of complex I cases. The 2 patients sharing a nuclear complementation group had a similar abnormal complex I assembly profile and were studied further by homozygosity mapping, chromosome transfers, and microarray expression analysis. NDUFS6, a complex I subunit gene not previously associated with complex I deficiency, was grossly underexpressed in the 2 patient cell lines. Both patients had homozygous mutations in this gene, one causing a splicing abnormality and the other a large deletion. This integrated approach to gene identification offers promise for identifying other unknown causes of respiratory chain disorders.


Asunto(s)
ADN Mitocondrial/genética , Complejo I de Transporte de Electrón/deficiencia , Complejo I de Transporte de Electrón/genética , Mutación/genética , Adolescente , Adulto , Edad de Inicio , Fusión Celular , Línea Celular , Preescolar , Femenino , Prueba de Complementación Genética , Humanos , Lactatos/sangre , Masculino , NADH Deshidrogenasa , Linaje
17.
Hear Res ; 225(1-2): 1-10, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17300888

RESUMEN

Recent developments in molecular genetics, including progress in the human genome project, have allowed identification of genes at an unprecedented rate. To date gene expression profiling studies have focused on identifying transcripts that are specifically or preferentially enriched within the inner ear on the assumption that they are more likely to be important for auditory and vestibular function. It is now apparent that some genes preferentially expressed in the cochleo-vestibular system are not crucial for hearing or balance or their functions are compensated for by other genes. In addition, transcripts expressed at low abundance in the inner ear are generally under-represented in gene profiling studies. In this review, we highlight the limitations of current gene expression profiling strategies as a discovery tool for genes involved in cochleo-vestibular development and function. We argue that expression profiling based on hierarchical clustering of transcripts by gene ontology, combined with tissue enrichment data, is more effective for inner ear gene discovery. This approach also provides a framework to assist and direct the functional characterization of gene products.


Asunto(s)
Oído Interno/metabolismo , Animales , ADN Complementario/genética , Bases de Datos Genéticas , Perfilación de la Expresión Génica , Biblioteca de Genes , Genómica , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos
18.
J Mol Diagn ; 8(4): 483-9; quiz 528, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16931589

RESUMEN

Knowing the etiology of hearing loss in a person has implications for counseling and management of the condition. More than 50% of cases of early onset, nonsyndromic sensorineural hearing loss are attributable to genetic factors. However, deafness is a genetically heterogeneous condition and it is therefore currently not economically and practically feasible to screen for mutations in all known deafness genes. We have developed a microarray-based hybridization biochip assay for the detection of known mutations. The current version of the hearing loss biochip detects nine common mutations in the connexin 26 gene, four mutations in the pendrin gene, one mutation in the usherin gene, and one mutation in mitochondrial DNA. The biochip was validated using DNA from 250 people with apparent nonsyndromic, moderate to profound sensorineural hearing loss. The hearing loss biochip detected with 100% accuracy the mutations it was designed for. No false-positives or false-negative results were seen. The biochip can easily be expanded to test for additional mutations in genes associated with hearing impairment or other genetic conditions.


Asunto(s)
Análisis Mutacional de ADN/métodos , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva/genética , Análisis por Micromatrices/métodos , Mutación , Pérdida Auditiva Sensorineural/diagnóstico , Humanos , Reacción en Cadena de la Polimerasa
19.
Laryngoscope ; 116(12): 2211-5, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17146397

RESUMEN

BACKGROUND: Nonsyndromic autosomal-dominant, adult-onset sensorineural hearing loss resulting from DFNA17 was described in a single American kindred in 1997, and the causative gene was subsequently identified as MYH9. OBJECTIVE: The objective of this study was to report clinical and genetic analyses of an Australian family with nonsyndromic adult-onset sensorineural hearing loss. METHODS: The clinical presentation of the family was detailed and identification of the causative gene was conducted by SNP genotyping and direct sequencing. RESULTS: Sequence analysis of the MYH9 gene revealed the same missense mutation as in the original DFNA17 family. We are not aware of a link between the two kindreds, making the present one only the second DFNA17 family to be reported. CONCLUSIONS: One important point of clinical relevance is the excellent outcome with cochlear implants in the Australian family compared with a "poor" response in the American family. Thus, cochlear implants should be strongly considered for clinical management of patients with DFNA17 deafness.


Asunto(s)
Implantación Coclear , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva Sensorineural/cirugía , Proteínas Motoras Moleculares/genética , Cadenas Pesadas de Miosina/genética , Adolescente , Adulto , Edad de Inicio , Niño , Femenino , Ligamiento Genético , Pérdida Auditiva Sensorineural/epidemiología , Humanos , Masculino , Mutación Missense , Linaje , Análisis de Secuencia de ADN
20.
Acta Otolaryngol ; 126(11): 1148-57, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17050306

RESUMEN

CONCLUSION: Our study outlines an alternative approach for the selection and investigation of genes involved in inner ear function. OBJECTIVE: To gain understanding of the gene pathways involved in the development of the normal cochlea. MATERIALS AND METHODS: Microarray technology currently offers the most efficient approach to investigate gene expression and identify pathways involved in cell differentiation. Epidermal growth factor (EGF) induces cultures derived from the organ of Corti to proliferate and produce new hair cells. Since pluripotent embryonic stem (ES) cells have the capacity to generate all tissues, we induced murine ES cells to differentiate towards ectodermal and neuroectodermal cell types and from there investigated their commitment towards the hair cell lineage in the presence of EGF. Cells were collected at three points along the differentiation pathway and their expression profiles were determined using the Soares NMIE mouse inner ear cDNA library printed in microarray format. RESULTS: Three genes up-regulated after addition of EGF (serine (or cysteine) proteinase inhibitor, clade H, member 1 (Serpinh1), solute carrier family 2 (facilitated glucose transporter), member 10 (Slc2a10) and secreted acidic cysteine-rich glycoprotein (Sparc)) were selected for further analysis and characterization. Of the three genes, Serpinh1 and Slc2a10 have never been implicated in the hearing process.


Asunto(s)
Diferenciación Celular/genética , Células Madre Embrionarias/citología , Regulación de la Expresión Génica/fisiología , Células Ciliadas Auditivas Internas/citología , Células Madre Pluripotentes/citología , Animales , División Celular/genética , Línea Celular , Factor de Crecimiento Epidérmico/farmacología , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Proteínas del Choque Térmico HSP47/genética , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Órgano Espiral/citología , Osteonectina/genética , Ingeniería de Tejidos , Regulación hacia Arriba/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA