Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Exp Dermatol ; 32(1): 30-40, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36134503

RESUMEN

Prurigo nodularis (PN), characterized by inevitable chronicity and severe pruritus, is most frequently associated with atopy compared with other origins. However, the skin transcriptomic profiling of PN arising from atopic dermatitis (AD), so-called atopic PN (APN), remains unclear. We sought to explore the cutaneous transcriptome of APN with severe pruritus and compare it with classic AD. RNA sequencing was performed on the lesional skin from 13 APN to 11 AD patients with severe pruritus (itch numerical rating scale score ≥ 7) and normal skin from 11 healthy subjects. Quantitative real-time polymerase chain reaction and immunochemistry were used for validation. We detected 1085 and 1984 differentially expressed genes (DEGs) in lesional APN skin and lesional AD skin versus normal skin, respectively. In total, 142 itch/inflammation-related DEGs were identified. Itch/inflammation-related DEGs, such as IL-6, IL-10, IL-13, oncostatin M, and IL-4 receptor, had elevated gene transcript levels in both diseases. The itch/inflammation-related DEGs that increased only in APN were mainly neuroactive molecules, while many inflammatory mediators such as T helper 22-related genes were found to be increased only in AD. Both disorders showed mixed Th1/Th2/Th17 polarisation and impaired skin barrier. In contrast to AD, M1/M2 macrophage activation, tumor necrosis factor production, fibrosis, revascularization and neural dysregulation are unique features of APN. The study findings broaden our understanding of the pathogenesis underlying APN, which provides insights into novel pathogenesis with potential therapeutic implications.


Asunto(s)
Dermatitis Atópica , Prurigo , Humanos , Transcriptoma , Prurigo/genética , Prurigo/patología , Prurito/genética , Dermatitis Atópica/complicaciones , Dermatitis Atópica/genética , Dermatitis Atópica/patología , Análisis de Secuencia de ARN , Inflamación/genética
2.
Hepatology ; 73(2): 674-691, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32335942

RESUMEN

BACKGROUND AND AIMS: Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths worldwide, hence a major public health threat. Pleomorphic adenoma gene like-2 (PLAGL2) has been reported to play a role in tumorigenesis. However, its precise function in HCC remains poorly understood. APPROACH AND RESULTS: In this study, we demonstrated that PLAGL2 was up-regulated in HCC compared with that of adjacent nontumorous tissues and also correlated with overall survival times. We further showed that PLAGL2 promoted HCC cell proliferation, migration, and invasion both in vitro and in vivo. PLAGL2 expression was positively correlated with epidermal growth factor receptor (EGFR) expression. Mechanistically, this study demonstrated that PLAGL2 functions as a transcriptional regulator of EGFR and promotes HCC cell proliferation, migration, and invasion through the EGFR-AKT pathway. Moreover, hypoxia was found to significantly induce high expression of PLAGL2, which promoted hypoxia inducible factor 1/2 alpha subunit (HIF1/2A) expression through EGFR. Therefore, this study demonstrated that a PLAGL2-EGFR-HIF1/2A signaling loop promotes HCC progression. More importantly, PLAGL2 expression reduced hepatoma cells' response to the anti-EGFR drug erlotinib. PLAGL2 knockdown enhanced the response to erlotinib. CONCLUSIONS: This study reveals the pivotal role of PLAGL2 in HCC cell proliferation, metastasis, and erlotinib insensitivity. This suggests that PLAGL2 can be a potential therapeutic target of HCC.


Asunto(s)
Carcinoma Hepatocelular/genética , Proteínas de Unión al ADN/metabolismo , Clorhidrato de Erlotinib/farmacología , Neoplasias Hepáticas/genética , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/metabolismo , Adulto , Anciano , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/mortalidad , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Proteínas de Unión al ADN/genética , Progresión de la Enfermedad , Resistencia a Antineoplásicos/genética , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Clorhidrato de Erlotinib/uso terapéutico , Retroalimentación Fisiológica , Femenino , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Estimación de Kaplan-Meier , Hígado/patología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/patología , Masculino , Ratones , Persona de Mediana Edad , Invasividad Neoplásica/genética , Proteínas de Unión al ARN/genética , RNA-Seq , Transducción de Señal/genética , Factores de Transcripción/genética , Hipoxia Tumoral , Regulación hacia Arriba , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Med Res Rev ; 41(1): 156-201, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32844499

RESUMEN

Immunotherapy has revolutionized the treatment of cancer in recent years and achieved overall success and long-term clinical benefit in patients with a wide variety of cancer types. However, there is still a large proportion of patients exhibiting limited or no responses to immunotherapeutic strategy, some of which were even observed with hyperprogressive disease. One major obstacle restricting the efficacy is that tumor-reactive CD8+ T cells, which are central for tumor control, undergo exhaustion, and lose their ability to eliminate cancer cells after infiltrating into the strongly immunosuppressive tumor microenvironment. Thus, as a potential therapeutic rationale in the development of cancer immunotherapy, targeting or reinvigorating exhausted CD8+ T cells has been attracting much interest. Hitherto, both intrinsic and extrinsic mechanisms that govern CD8+ T-cell exhaustion have been explored. Specifically, the transcriptional and epigenetic landscapes have been depicted utilizing single-cell RNA sequencing or mass cytometry (CyTOF). In addition, cellular metabolism dictating the tumor-infiltrating CD8+ T-cell fate is currently under investigation. A series of clinical trials are being carried out to further establish the current strategies targeting CD8+ T-cell exhaustion. Taken together, despite the proven benefit of immunotherapy in cancer patients, additional efforts are still needed to fully circumvent limitations of exhausted T cells in the treatment. In this review, we will focus on the current cellular and molecular understanding of metabolic changes, epigenetic remodeling, and transcriptional regulation in CD8+ T-cell exhaustion and describe hypothetical treatment approaches based on immunotherapy aiming at reinvigorating exhausted CD8+ T cells.


Asunto(s)
Neoplasias , Microambiente Tumoral , Linfocitos T CD8-positivos , Humanos , Inmunoterapia , Neoplasias/terapia , Linfocitos T Citotóxicos
4.
Blood ; 130(3): 310-322, 2017 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-28202458

RESUMEN

Activated B-cell-like (ABC) and germinal center B-cell-like diffuse large B-cell lymphoma (DLBCL) represent the 2 major molecular DLBCL subtypes. They are characterized by differences in clinical course and by divergent addiction to oncogenic pathways. To determine activity of novel compounds in these 2 subtypes, we conducted an unbiased pharmacologic in vitro screen. The phosphatidylinositol-3-kinase (PI3K) α/δ (PI3Kα/δ) inhibitor AZD8835 showed marked potency in ABC DLBCL models, whereas the protein kinase B (AKT) inhibitor AZD5363 induced apoptosis in PTEN-deficient DLBCLs irrespective of their molecular subtype. These in vitro results were confirmed in various cell line xenograft and patient-derived xenograft mouse models in vivo. Treatment with AZD8835 induced inhibition of nuclear factor κB signaling, prompting us to combine AZD8835 with the Bruton's tyrosine kinase inhibitor ibrutinib. This combination was synergistic and effective both in vitro and in vivo. In contrast, the AKT inhibitor AZD5363 was effective in PTEN-deficient DLBCLs through downregulation of the oncogenic transcription factor MYC. Collectively, our data suggest that patients should be stratified according to their oncogenic dependencies when treated with PI3K and AKT inhibitors.


Asunto(s)
Antineoplásicos/farmacología , Regulación Neoplásica de la Expresión Génica , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Oxadiazoles/farmacología , Piperidinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Pirazoles/farmacología , Pirimidinas/farmacología , Pirroles/farmacología , Adenina/análogos & derivados , Agammaglobulinemia Tirosina Quinasa , Animales , Apoptosis/efectos de los fármacos , Combinación de Medicamentos , Ensayos de Selección de Medicamentos Antitumorales , Sinergismo Farmacológico , Humanos , Linfoma de Células B Grandes Difuso/clasificación , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/patología , Ratones , FN-kappa B/antagonistas & inhibidores , FN-kappa B/genética , FN-kappa B/metabolismo , Especificidad de Órganos , Fosfohidrolasa PTEN/deficiencia , Fosfohidrolasa PTEN/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-myc/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transducción de Señal , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Blood ; 129(3): 333-346, 2017 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-27864294

RESUMEN

Mantle cell lymphoma (MCL) is a mature B-cell lymphoma characterized by poor clinical outcome. Recent studies revealed the importance of B-cell receptor (BCR) signaling in maintaining MCL survival. However, it remains unclear which role MALT1, an essential component of the CARD11-BCL10-MALT1 complex that links BCR signaling to the NF-κB pathway, plays in the biology of MCL. Here we show that a subset of MCLs is addicted to MALT1, as its inhibition by either RNA or pharmacologic interference induced cytotoxicity both in vitro and in vivo. Gene expression profiling following MALT1 inhibition demonstrated that MALT1 controls an MYC-driven gene expression network predominantly through increasing MYC protein stability. Thus, our analyses identify a previously unappreciated regulatory mechanism of MYC expression. Investigating primary mouse splenocytes, we could demonstrate that MALT1-induced MYC regulation is not restricted to MCL, but represents a common mechanism. MYC itself is pivotal for MCL survival because its downregulation and pharmacologic inhibition induced cytotoxicity in all MCL models. Collectively, these results provide a strong mechanistic rationale to investigate the therapeutic efficacy of targeting the MALT1-MYC axis in MCL patients.


Asunto(s)
Caspasas/metabolismo , Linfoma de Células del Manto/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Receptores de Antígenos de Linfocitos B/fisiología , Animales , Caspasas/fisiología , Muerte Celular , Línea Celular Tumoral , Supervivencia Celular , Regulación Neoplásica de la Expresión Génica , Xenoinjertos , Humanos , Ratones , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas , FN-kappa B/metabolismo , Proteínas de Neoplasias/fisiología , Transducción de Señal
6.
Elife ; 122024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38865175

RESUMEN

Philadelphia chromosome-positive (Ph+) leukemia is a fatal hematological malignancy. Although standard treatments with tyrosine kinase inhibitors (TKIs) have achieved remarkable success in prolonging patient survival, intolerance, relapse, and TKI resistance remain serious issues for patients with Ph+ leukemia. Here, we report a new leukemogenic process in which RAPSYN and BCR-ABL co-occur in Ph+ leukemia, and RAPSYN mediates the neddylation of BCR-ABL. Consequently, neddylated BCR-ABL enhances the stability by competing its c-CBL-mediated degradation. Furthermore, SRC phosphorylates RAPSYN to activate its NEDD8 E3 ligase activity, promoting BCR-ABL stabilization and disease progression. Moreover, in contrast to in vivo ineffectiveness of PROTAC-based degraders, depletion of RAPSYN expression, or its ligase activity decreased BCR-ABL stability and, in turn, inhibited tumor formation and growth. Collectively, these findings represent an alternative to tyrosine kinase activity for the oncoprotein and leukemogenic cells and generate a rationale of targeting RAPSYN-mediated BCR-ABL neddylation for the treatment of Ph+ leukemia.


Chronic myeloid leukemia (CML for short) accounts for about 15% of all blood cancers diagnosed in adults in the United States. The condition is characterized by the overproduction of immature immune cells that interfere with proper blood function. It is linked to a gene recombination (a type of mutation) that leads to white blood cells producing an abnormal 'BCR-ABL' enzyme which is always switched on. In turn, this overactive protein causes the cells to live longer and divide uncontrollably. Some of the most effective drugs available to control the disease today work by blocking the activity of BCR-ABL. Yet certain patients can become resistant to these treatments over time, causing them to relapse. Other approaches are therefore needed to manage this disease; in particular, a promising avenue of research consists in exploring whether it is possible to reduce the amount of the enzyme present in diseased cells. As part of this effort, Zhao, Dai, Li, Zhang et al. focused on RAPSYN, a scaffolding protein previously unknown in CML cells. In other tissues, it has recently been shown to participate in neddylation ­ a process by which proteins receive certain chemical 'tags' that change the way they behave. The experiments revealed that, compared to healthy volunteers, RAPSYN was present at much higher levels in the white blood cells of CML patients. Experimentally lowering the amount of RAPSYN in CML cells led these to divide less quickly ­ both in a dish and when injected in mice, while also being linked to decreased levels of BCR-ABL. Additional biochemical experiments indicated that RAPSYN sticks with BCR-ABL to add chemical 'tags' that protect the abnormal protein against degradation, therefore increasing its overall levels. Finally, the team showed that SRC, an enzyme often dysregulated in emerging cancers, can activate RAPSYN's ability to conduct neddylation; such mechanism could promote BCR-ABL stabilization and, in turn, disease progression. Taken together, these experiments indicate a new way by which BCR-ABL levels are controlled. Future studies should investigate whether RAPSYN also stabilizes BCR-ABL in patients whose leukemias have become resistant to existing drugs. Eventually, RAPSYN may offer a new target for overcoming drug-resistance in CML patients.


Asunto(s)
Proteínas de Fusión bcr-abl , Leucemia Mielógena Crónica BCR-ABL Positiva , Proteínas Musculares , Animales , Humanos , Ratones , Línea Celular Tumoral , Proteínas de Fusión bcr-abl/metabolismo , Proteínas de Fusión bcr-abl/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Proteína NEDD8/metabolismo , Proteína NEDD8/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Proteínas Musculares/metabolismo
7.
Cancer Res ; 84(5): 771-784, 2024 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-38190716

RESUMEN

Colorectal cancer development and outcome are impacted by modifiable risk factors, including psychologic stress. The gut microbiota has also been shown to be linked to psychologic factors. Here, we found a marked deteriorative effect of chronic stress in multiple colorectal cancer models, including chemically induced (AOM/DSS), genetically engineered (APCmin/+), and xenograft tumor mouse models. RNA sequencing data from colon tissues revealed that expression of stemness-related genes was upregulated in the stressed colorectal cancer group by activated ß-catenin signaling, which was further confirmed by results from ex vivo organoid analyses as well as in vitro and in vivo cell tumorigenicity assays. 16S rRNA sequencing of the gut microbiota showed that chronic stress disrupted gut microbes, and antibiotic treatment and fecal microbiota transplantation abolished the stimulatory effects of chronic stress on colorectal cancer progression. Stressed colorectal cancer mice displayed a significant decrease in Lactobacillus johnsonii (L. johnsonii) abundance, which was inversely correlated with tumor load. Moreover, protocatechuic acid (PCA) was identified as a beneficial metabolite produced by L. johnsonii based on metabolome sequencing and LC/MS-MS analysis. Replenishment of L. johnsonii or PCA blocked chronic stress-induced colorectal cancer progression by decreasing ß-catenin expression. Furthermore, PCA activated the cGMP pathway, and the cGMP agonist sildenafil abolished the effects of chronic stress on colorectal cancer. Altogether, these data identify that stress impacts the gut microbiome to support colorectal cancer progression. SIGNIFICANCE: Chronic stress stimulates cancer stemness by reducing the intestinal abundance of L. johnsonii and its metabolite PCA to enhance ß-catenin signaling, forming a basis for potential strategies to circumvent stress-induced cancer aggressiveness. See related commentary by McCollum and Shah, p. 645.


Asunto(s)
Neoplasias Colorrectales , Microbioma Gastrointestinal , Lactobacillus johnsonii , Humanos , Animales , Ratones , Neoplasias Colorrectales/metabolismo , beta Catenina/genética , Lactobacillus johnsonii/genética , ARN Ribosómico 16S/genética
8.
J Med Chem ; 67(13): 10743-10773, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38919032

RESUMEN

Beta-1,3-glucuronosyltransferase (B3GAT3), overexpressed in hepatocellular carcinoma (HCC) and negatively correlated to prognosis, is a promising target for cancer therapy. Currently, no studies have reported small molecule inhibitors of B3GAT3. In this study, we designed and synthesized a series of small-molecule inhibitors of B3GAT3 through virtual screening and structure optimization. The lead compound TMLB-C16 exhibited potent B3GAT3 inhibitory activity (KD = 3.962 µM) by effectively suppressing proliferation and migration, and inducing cell cycle arrest and apoptosis in MHCC-97H (IC50= 6.53 ± 0.18 µM) and HCCLM3 (IC50= 6.22 ± 0.23 µM) cells. Furthermore, compound TMLB-C16 demonstrated favorable pharmacokinetic properties with a relatively high bioavailability of 68.37%. It significantly inhibited tumor growth in both MHCC-97H and HCCLM3 xenograft tumor models without causing obvious toxicity. These results indicate that compound TMLB-C16 is an effective small molecule inhibitor of B3GAT3, providing a basis for the future development of B3GAT3-targeted drugs.


Asunto(s)
Acetamidas , Antineoplásicos , Carcinoma Hepatocelular , Proliferación Celular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Animales , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Antineoplásicos/síntesis química , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Acetamidas/química , Acetamidas/farmacología , Acetamidas/síntesis química , Acetamidas/uso terapéutico , Ratones , Relación Estructura-Actividad , Apoptosis/efectos de los fármacos , Ratones Desnudos , Descubrimiento de Drogas , Ratones Endogámicos BALB C , Ensayos Antitumor por Modelo de Xenoinjerto , Simulación del Acoplamiento Molecular , Masculino , Movimiento Celular/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/uso terapéutico , Inhibidores Enzimáticos/síntesis química
9.
Eur J Pharmacol ; 949: 175718, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37054937

RESUMEN

Colorectal cancer (CRC) stands as the second leading cause of cancer-related deaths worldwide with limited available medicines. While drug repurposing comes as a promising strategy for cancer treatment, we discovered that propranolol (Prop), a non-selective ß1 and ß2 adrenergic receptor blocker, significantly inhibited the development of subcutaneous CT26 CRC and AOM/DSS-induced CRC models. The RNA-seq analysis highlighted the activated immune pathways after Prop treatment, with KEGG analysis enriched in T-cell differentiation. Routine analyses of blood revealed a decrease in neutrophil to lymphocyte ratio, a biomarker of systemic inflammation, and a prognostic indicator in the Prop-treated groups in both CRC models. Analysis of the tumor-infiltrating immune cells exhibited that Prop regressed the exhaustion of CD4+ and CD8+ T cells in the CT26-derived graft models, which was further corroborated in the AOM/DSS-induced models. Furthermore, bioinformatic analysis fitted well with the experimental data, showing that ß2 adrenergic receptor (ADRB2) was positively correlated with T-cell exhaustion signature in various tumors. The in vitro experiment showed no direct effect of Prop on CT26 cell viability, while T cells were activated with significantly-upregulated production of IFN-γ and Granzyme B. Consistently, Prop was unable to restrain CT26 tumor growth in nude mice. At last, the combination of Prop and the chemotherapeutic drug Irinotecan acted out the strongest inhibition in CT26 tumor progress. Collectively, we repurpose Prop as a promising and economical therapeutic drug for CRC treatment and highlight T-cell as its target.


Asunto(s)
Neoplasias Colorrectales , Propranolol , Animales , Ratones , Propranolol/farmacología , Propranolol/uso terapéutico , Irinotecán/farmacología , Irinotecán/uso terapéutico , Linfocitos T CD8-positivos , Ratones Desnudos , Antagonistas Adrenérgicos beta/farmacología , Antagonistas Adrenérgicos beta/uso terapéutico , Neoplasias Colorrectales/patología , Línea Celular Tumoral
10.
Leuk Lymphoma ; 58(7): 1530-1537, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-27894215

RESUMEN

Mantle cell lymphoma (MCL) is characterized by the translocation t(11;14) leading to constitutive cyclin D1 overexpression. However, overexpression of cyclin D1 alone is insufficient to cause malignant transformation. Secondary genetic alterations and deregulated signaling pathways involved in DNA damage response, cell proliferation, and apoptosis are indispensable for MCL lymphomagenesis. Recent studies investigating the biology of MCL have revealed crucial importance of B-cell receptor (BCR), nuclear factor-kappa B (NF-κB), phosphoinositide 3-kinase (PI3K), and BCL2 signaling for the molecular pathogenesis of MCL. In addition, activation of the Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3), NOTCH and WNT pathway can be observed in subsets of MCLs. These addictions can potentially be utilized therapeutically by implementing small molecule inhibitors into current treatment regimens.


Asunto(s)
Linfoma de Células del Manto/etiología , Linfoma de Células del Manto/metabolismo , Animales , Biomarcadores , Ciclina D1/genética , Ciclina D1/metabolismo , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Variación Genética , Humanos , Linfoma de Células del Manto/tratamiento farmacológico , Terapia Molecular Dirigida , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA