Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Nano Lett ; 21(7): 2946-2952, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33759536

RESUMEN

The flexoelectric effect, which manifests itself as a strain-gradient-induced electrical polarization, has triggered great interest due to its ubiquitous existence in crystalline materials without the limitation of lattice symmetry. Here, we propose a flexoelectric photodetector based on a thin-film heterostructure. This prototypical device is demonstrated by epitaxial LaFeO3 thin films grown on LaAlO3 substrates. A giant strain gradient of the order of 106/m is achieved in LaFeO3 thin films, giving rise to an obvious flexoelectric polarization and generating a significant photovoltaic effect in the LaFeO3-based heterostructures with nanosecond response under light illumination. This work not only demonstrates a novel self-powered photodetector different from the traditional interface-type structures, such as the p-n and Schottky junctions but also opens an avenue to design practical flexoelectric devices for nanoelectronics applications.

2.
Nanotechnology ; 32(33)2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-33910189

RESUMEN

By adoption of a high permittivity ZrO2capping layer (ZOCL), enhanced ferroelectric properties were achieved in the Hf0.5Zr0.5O2(HZO) thin films. For HZO thin film with 10 Å ZOCL, the 2Prvalue can reach as high as ∼43.1µC cm-2under a sweep electric field of 3 MV cm-1. In addition, a reduced coercive field of 1.5 MV cm-1was observed, which is comparable to that of HZO with metallic CL. Furthermore, the homogeneity of ferroelectric orthorhombic phase in HZO films was observed to be clearly increased, as evidenced by nanoscale piezoelectric force microscopy measurements. These results demonstrate that ZOCL is very favorable for high performance ferroelectric HZO films and their future device applications.

3.
Nanotechnology ; 31(14): 145712, 2020 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-31860893

RESUMEN

Two-dimensional (2D) metallic transition metal dichalcogenides (TMDs) exhibit fascinating quantum effects, such as charge-density-wave (CDW) and weak antilocalization (WAL) effect. Herein, low temperature synthesis of 1T phase VSe2 single crystals with thickness ranging from 3 to 41 nm by chemical vapor deposition (CVD) is reported. The VSe2 shows a decreasing phase transition temperature of the CDW when the thickness is decreased. Moreover, low-temperature magnetotransport measurements demonstrate a linear positive and non-saturating magnetoresistance (MR) of 35% from a 35 nm thick VSe2 at 15 T and 2 K due to CDW induce mobility fluctuations. Surprisingly, Kohler's rule analysis of the MR reveals the non-applicability of Kohler's rule for temperature above 50 K indicating that the MR behavior cannot be described in terms of semiclassical transport on a single Fermi surface with a single scattering time. Furthermore, WAL effect is observed in the 4.2 nm thick VSe2 at low magnetic fields at 2 K, revealing the contribution of the quantum interference effect at the 2D limit. The phase coherence length [Formula: see text] and spin-orbit scattering length [Formula: see text] were determined to be 73 nm and 18 nm at 2 K, respectively. Our work opens new avenues to study the fundamental quantum phenomena in CVD-deposited TMDs.

4.
Phys Rev Lett ; 122(25): 257601, 2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-31347866

RESUMEN

Thin film flexoelectricity is attracting more attention because of its enhanced effect and potential application in electronic devices. Here we find that a mechanical bending induced flexoelectricity significantly modulates the electrical transport properties of the interfacial two-dimensional electron gas (2DEG) at the LaAlO_{3}/SrTiO_{3} (LAO/STO) heterostructure. Under variant bending states, both the carrier density and mobility of the 2DEG are changed according to the flexoelectric polarization direction, showing an electric field effect modulation. By measuring the flexoelectric response of LAO, it is found that the effective flexoelectricity in the LAO thin film is enhanced by 3 orders compared to its bulk. These results broaden the horizon of study on the flexoelectricity effect in the hetero-oxide interface and more research on the oxide interfacial flexoelectricity may be stimulated.

5.
Angew Chem Int Ed Engl ; 57(50): 16452-16457, 2018 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-30375752

RESUMEN

The synthesis of discrete nanostructures with a strong, persistent, stable plasmonic circular dichroism (PCD) signal is challenging. We report a seed-mediated growth approach to obtain discrete Au nanorods with high and stable chiroptical responses (c-Au NRs) in the visible to near-IR region. The morphology of the c-Au NRs was governed by the concentration of l- or d-cysteine used. The amino acids encapsulated within the discrete gold nanostructure enhance their PCD signal, attributed to coupling of dipoles of chiral molecules with the near-field induced optical activity at the hot spots inside the c-Au NRs. The stability of the PCD signal and biocompatibility of c-Au NRs was improved by coating with silica or protein corona. Discrete c-Au NR@SiO2 with Janus or core-shell configurations retained their PCD signal even in organic solvents. A side-by-side assembly of c-Au NRs induced by l-glutathione led to further PCD signal enhancement, with anisotropic g factors as high as 0.048.


Asunto(s)
Materiales Biocompatibles/química , Cisteína/química , Oro/química , Nanotubos/química , Nanotubos/ultraestructura , Dicroismo Circular , Glutatión/química , Nanotecnología , Dióxido de Silicio/química , Estereoisomerismo
6.
Angew Chem Int Ed Engl ; 56(5): 1283-1288, 2017 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-28004466

RESUMEN

Detailed understanding of the interaction between a chiral molecule and a noble metal surface is essential to rationalize and advance interfacial self-assembly of amino acids and metal-mediated anchoring of proteins. Here we demonstrate that individual Au@Ag core-shell nanocuboids can serve as a plasmonic reporter of an extended helical network formed among chemisorbed cysteine molecules, through generating an interband absorption enhanced, Ag-surface-exclusive circular dichroism (CD) band in the UV region. The observed unusual, strong CD response in the hybrid Au@Ag-cysteine system can be used to probe in real time conformational evolution and structural rearrangement of biomolecules in general and also monitor the interfacial interaction between a metal surface and an adsorbed molecule, opening up the possibility of using Ag nanostructures as promising stereochemically attuned nanosensors.

7.
Nanotechnology ; 27(48): 485302, 2016 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-27819797

RESUMEN

Efficient and cost-competitive fabrication of high-quality ferroelectric and multiferroic nanostructures is of general interest. In this work, a top-down nano-patterning technique is developed by the Ar+ ion beam etching in combination with the sacrificed ultrathin anodic alumina (AAO) mask. This technique is demonstrated by preparation of the epitaxial BiFeO3 (BFO) nanostructures of various geometries, including nanodot and anti-nanodot arrays. The lateral dot size is as small as ∼60 nm and an ultrahigh dot density of ∼60 Gbit/inch2 is achieved. It is revealed that the etching process involves sequential shape evolution of both the AAO mask and the underlying BFO film, resulting in the nanodots and anti-nanodots arrays of various geometries. The as-etched BFO nanodots array exhibits well-established ferroelectric domain structures and reversible polarization switching, as examined by piezoresponse force microscopy (PFM). It is suggested that this technique is extendable to fabrication of a wide range of functional oxide nanostructures for potential nanoelectronic applications.

8.
Opt Express ; 23(25): 31908-14, 2015 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-26698982

RESUMEN

Molybdenum disulfide (MoS2) as a promising 2D material has attracted extensive attentions due to its unique physical, optical and electrical properties. In this work, we demonstrate an infrared (IR) light gated MoS2 transistor through a device composed of MoS2 monolayer and a ferroelectric single crystal Pb(Mg(1/3)Nb(2/3))O3-PbTiO3 (PMN-PT). With a monolayer MoS2 onto the top surface of (111) PMN-PT crystal, the drain current of MoS2 channel can be modulated with infrared illumination and this modulation process is reversible. Thus, the transistor can work as a new kind of IR photodetector with a high IR responsivity of 114%/Wcm⁻². The IR response of MoS2 transistor is attributed to the polarization change of PMN-PT single crystal induced by the pyroelectric effect which results in a field effect. Our result promises the application of MoS2 2D material in infrared optoelectronic devices. Combining with the intrinsic photocurrent feature of MoS2 in the visible range, the MoS2 on ferroelectric single crystal may be sensitive to a broadband wavelength of light.

9.
Sensors (Basel) ; 14(8): 13348-60, 2014 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-25061836

RESUMEN

Noninvasive visualization of blood flow with high frequency Doppler ultrasound has been extensively used to assess the morphology and hemodynamics of the microcirculation. A completely digital implementation of multigate pulsed-wave (PW) Doppler method was proposed in this paper for high frequency ultrasound applications. Analog mixer was eliminated by a digital demodulator and the same data acquisition path was shared with traditional B-mode imaging which made the design compact and flexible. Hilbert transform based quadrature demodulation scheme was employed to achieve the multigate Doppler acquisition. A programmable high frequency ultrasound platform was also proposed to facilitate the multigate flow visualization. Experimental results showed good performance of the proposed method. Parabolic velocity gradient inside the vessel and velocity profile with different time slots were acquired to demonstrate the functionality of the multigate Doppler. Slow wall motion was also recorded by the proposed method.


Asunto(s)
Ultrasonido/instrumentación , Ultrasonido/métodos , Velocidad del Flujo Sanguíneo/fisiología , Hemodinámica/fisiología , Ondas de Choque de Alta Energía , Humanos , Microcirculación/fisiología
10.
Sensors (Basel) ; 14(8): 13730-58, 2014 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-25076222

RESUMEN

Relaxor-based ferroelectric single crystals Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) have drawn much attention in the ferroelectric field because of their excellent piezoelectric properties and high electromechanical coupling coefficients (d33~2000 pC/N, kt~60%) near the morphotropic phase boundary (MPB). Ternary Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) single crystals also possess outstanding performance comparable with PMN-PT single crystals, but have higher phase transition temperatures (rhombohedral to tetragonal Trt, and tetragonal to cubic Tc) and larger coercive field Ec. Therefore, these relaxor-based single crystals have been extensively employed for ultrasonic transducer applications. In this paper, an overview of our work and perspectives on using PMN-PT and PIN-PMN-PT single crystals for ultrasonic transducer applications is presented. Various types of single-element ultrasonic transducers, including endoscopic transducers, intravascular transducers, high-frequency and high-temperature transducers fabricated using the PMN-PT and PIN-PMN-PT crystals and their 2-2 and 1-3 composites are reported. Besides, the fabrication and characterization of the array transducers, such as phased array, cylindrical shaped linear array, high-temperature linear array, radial endoscopic array, and annular array, are also addressed.


Asunto(s)
Niobio/química , Óxidos/química , Transductores , Ultrasonido/métodos , Cristalización/métodos , Diseño de Equipo/métodos , Análisis de Falla de Equipo/métodos , Calor , Temperatura de Transición
11.
ACS Appl Mater Interfaces ; 16(24): 31363-31371, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38856161

RESUMEN

Being a major obstacle, Ag2Te has always been restricted in p-type AgSbTe2-based materials to improve their thermoelectric performance. This work reveals a stabilized AgSbTe2 through Sn/Ge alloying as synthesized by melting, annealing, and hot press. Interestingly, addition of Sn/Ge in AgSbTe2 extended the solubility limit up to ∼30% and hence suppressed Ag2Te in Ag(1-x)SnxSb(1-y)GeyTe2 compounds and led to enhanced electrical transport. Moreover, electrical and thermal transport properties of AgSbTe2 have been greatly affected by the phase transition of Ag2Te near 425 K. However, high-entropy Ag0.85Sn0.15Sb0.85Ge0.15Te2 compound results in a stabilized rock-salt structure and presents a high power factor of ∼10.8 µW cm-1 K-2 at 757 K. Besides, density functional theory reveals that available multivalence bands in Sn/Ge-doped AgSbTe2 lead to reduction in energy offsets. Meanwhile, a variety of defects appear in the Ag0.85Sn0.15Sb0.85Ge0.15Te2 sample due to entropy change, and thus lattice thermal conductivity decreases. Ultimately, a high figure of merit of ∼1.5 is attained at 757 K. This work demonstrates a roadmap for other group IV-VI materials so that the high-entropy approach may inhibit the impurity phases with extended solubility limit and result in high thermoelectric performance.

13.
Biol Sex Differ ; 14(1): 53, 2023 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-37605245

RESUMEN

BACKGROUND: Sexually dimorphic mating behaviors differ between sexes and involve gonadal hormones and possibly sexually dimorphic gene expression in the brain. However, the associations among the brain, gonad, and sexual behavior in teleosts are still unclear. Here, we utilized germ cells-free tdrd12 knockout (KO) zebrafish, and steroid synthesis enzyme cyp17a1-deficient zebrafish to investigate the differences and interplays in the brain-gonad-behavior axis, and the molecular control of brain dimorphism and male mating behaviors. METHODS: Tdrd12+/-; cyp17a1+/- double heterozygous parents were crossed to obtain tdrd12-/-; cyp17a1+/+ (tdrd12 KO), tdrd12+/+; cyp17a1-/- (cyp17a1 KO), and tdrd12-/-; cyp17a1-/- (double KO) homozygous progenies. Comparative analysis of mating behaviors were evaluated using Viewpoint zebrafish tracking software and sexual traits were thoroughly characterized based on anatomical and histological experiments in these KOs and wild types. The steroid hormone levels (testosterone, 11-ketotestosterone and 17ß-estradiol) in the brains, gonads, and serum were measured using ELISA kits. To achieve a higher resolution view of the differences in region-specific expression patterns of the brain, the brains of these KOs, and control male and female fish were dissected into three regions: the forebrain, midbrain, and hindbrain for transcriptomic analysis. RESULTS: Qualitative analysis of mating behaviors demonstrated that tdrd12-/- fish behaved in the same manner as wild-type males to trigger oviposition behavior, while cyp17a1-/- and double knockout (KO) fish did not exhibit these behaviors. Based on the observation of sex characteristics, mating behaviors and hormone levels in these mutants, we found that the maintenance of secondary sex characteristics and male mating behavior did not depend on the presence of germ cells; rather, they depended mainly on the 11-ketotestosterone and testosterone levels secreted into the brain-gonad regulatory axis. RNA-seq analysis of different brain regions revealed that the brain transcript profile of tdrd12-/- fish was similar to that of wild-type males, especially in the forebrain and midbrain. However, the brain transcript profiles of cyp17a1-/- and double KO fish were distinct from those of wild-type males and were partially biased towards the expression pattern of the female brain. Our results revealed important candidate genes and signaling pathways, such as synaptic signaling/neurotransmission, MAPK signaling, and steroid hormone pathways, that shape brain dimorphism and modulate male mating behavior in zebrafish. CONCLUSIONS: Our results provide comprehensive analyses and new insights regarding the endogenous interactions in the brain-gonad-behavior axis. Moreover, this study revealed the crucial candidate genes and neural signaling pathways of different brain regions that are involved in modulating brain dimorphism and male mating behavior in zebrafish, which would significantly light up the understanding the neuroendocrine and molecular mechanisms modulating brain dimorphism and male mating behavior in zebrafish and other teleost fish.


Asunto(s)
Caracteres Sexuales , Pez Cebra , Animales , Femenino , Masculino , Encéfalo , Sistemas Neurosecretores , Transducción de Señal
14.
Adv Mater ; 35(21): e2300027, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36876444

RESUMEN

Piezo-electrocatalysis as an emerging mechano-to-chemistry energy conversion technique opens multiple innovative opportunities and draws great interest over the past decade. However, the two potential mechanisms in piezo-electrocatalysis, i.e., screening charge effect and energy band theory, generally coexist in the most piezoelectrics, making the essential mechanism remain controversial. Here, for the first time, the two mechanisms in piezo-electrocatalytic CO2 reduction reaction (PECRR) is distinguished through a narrow-bandgap piezo-electrocatalyst strategy using MoS2 nanoflakes as demo. With conduction band of -0.12 eV, the MoS2 nanoflakes are unsatisfied for CO2 -to-CO redox potential of -0.53 eV, yet they achieve an ultrahigh CO yield of ≈543.1 µmol g-1  h-1 in PECRR. Potential band position shifts under vibration are still unsatisfied with CO2 -to-CO potential verified by theoretical investigation and piezo-photocatalytic experiment, further indicating that the mechanism of piezo-electrocatalysis is independent of band position. Besides, MoS2 nanoflakes exhibit unexpected intense "breathing" effect under vibration and enable the naked-eye-visible inhalation of CO2 gas, independently achieving the complete carbon cycle chain from CO2 capture to conversion. The CO2 inhalation and conversion processes in PECRR are revealed by a self-designed in situ reaction cell. This work brings new insights into the essential mechanism and surface reaction evolution of piezo-electrocatalysis.

15.
Nanomaterials (Basel) ; 12(13)2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35807964

RESUMEN

Multilevel resistive switching in memristive devices is vital for applications in non-volatile memory and neuromorphic computing. In this study, we report on the multilevel resistive switching characteristics in SnSe/SrTiO3(STO) heterojunction-based memory devices with silver (Ag) and copper (Cu) top electrodes. The SnSe/STO-based memory devices present bipolar resistive switching (RS) with two orders of magnitude on/off ratio, which is reliable and stable. Moreover, multilevel state switching is achieved in the devices by sweeping voltage with current compliance to SET the device from high resistance state (HRS) to low resistance state (LRS) and RESET from LRS to HRS by voltage pulses without compliance current. With Ag and Cu top electrodes, respectively, eight and six levels of resistance switching were demonstrated in the SnSe/SrTiO3 heterostructures with a Pt bottom electrode. These results suggest that a SnSe/STO heterojunction-based memristor is promising for applications in neuromorphic computing as a synaptic device.

16.
Ultrasonics ; 110: 106289, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33130363

RESUMEN

PURPOSE: Colonoscopy accompanied with biopsy works as the routine endoscopic strategy for the diagnosis of colorectal cancer (CRC) in clinic; however, the colonoscopy is limited to the tissue surface. During the last decades, enabling technologies are emerging to complement with the colonoscopy for better administration of CRC. The conventional low-frequency (<12 MHz) endoscopic ultrasound (EUS) guided fine-needle aspiration (FNA) has been widely used to assess the lesion penetration. With the high-frequency ultrasound transducer (>20 MHz), EUS allows more precise visualization of the colorectal abnormalities. In order to achieve the accurate detection or in situ characterization of the colorectal lesions, the EUS diagnosis needs more patho-physiological related information in the micro-structural or molecular level. Quantitative ultrasound (QUS) technique, which could extract the micro-structural information from the ultrasound radio-frequency (RF) signal, is promising for the non-invasive tissue characterization. To date, the knowledge of the high-frequency endoscopic QUS for the CRC characterization has not been fully determined. METHODS: In this work, to our best knowledge, it is the first application of the QUS technique based on a customized high-frequency EUS system (30.5 MHz center frequency) to characterize the colorectal malignancies in a VX2 rabbit CRC model. To eliminate the response from the ultrasound electronic system and transducer, the ultrasound signals from colon tissue were calibrated. And, the resulting quasi-liner ultrasound spectra were fit by the linear regression test. As a result, three spectral parameters, including the slope (k), intercept (I) and Midband Fit (M), were obtained from the best-fit line. The three spectral parameters were compared between the malignant tissue regions and adjacent normal tissue regions of the colon tissue specimen ex vivo. The independent t-test was conducted between the three parameters from the normal and malignant group. The statistical method of Fisher Linear Discriminant (FLD) was used to explore the linear combinations of the three parameters, so as to provide more tissue micro-structural features than the single parameter alone. The three FLD values were derived from three different combinations among k, I and M. The threshold was selected from the statistical analysis to optimize the differentiation criteria between the malignant and the normal tissues. The color-coded images were used to display the local FLD values and combined with the EUS B-mode image. RESULTS AND CONCLUSIONS: The mean Midband Fit (M) and intercept (I) showed significant differences between the malignant and normal tissue regions. The statistical analysis showed that there were significant differences in all the mean FLD values of the spectral parameter combinations (kI, kM and IM) (t test, P < 0.05). And, the combined image result from the B-mode image and color-coded image could visually correlate with the histology result. In conclusion, the high-frequency endoscopic QUS technique was potential to be used as a complementary method to distinguish the colorectal malignancies by leveraging its morphological and micro-structural ultrasound information.


Asunto(s)
Neoplasias Colorrectales/patología , Biopsia por Aspiración con Aguja Fina Guiada por Ultrasonido Endoscópico , Animales , Calibración , Línea Celular Tumoral , Modelos Animales de Enfermedad , Diseño de Equipo , Masculino , Conejos
17.
Nanoscale Adv ; 2(3): 1152-1160, 2020 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36133057

RESUMEN

An artificial synapse, such as a memristive electronic synapse, has caught world-wide attention due to its potential in neuromorphic computing, which may tremendously reduce computer volume and energy consumption. The introduction of layered two-dimensional materials has been reported to enhance the performance of the memristive electronic synapse. However, it is still a challenge to fabricate large-area layered two-dimensional films by scalable methods, which has greatly limited the industrial application potential of two-dimensional materials. In this work, a scalable pulsed laser deposition (PLD) method has been utilized to fabricate large-area layered SnSe films, which are used as the functional layers of the memristive electronic synapse with dual modes. Both long-term memristive behaviour with gradually changed resistance (Mode 1) and short-term memristive behavior with abruptly reduced resistance (Mode 2) have been achieved in this SnSe-based memristive electronic synapse. The switching between Mode 1 and Mode 2 can be realized by a series of voltage sweeping and programmed pulses. The formation and recovery of Sn vacancies were believed to induce the short-term memristive behaviour, and the joint action of Ag filament formation/rupture and Schottky barrier modulation can be the origin of long-term memristive behaviour. DFT calculations were performed to further illustrate how Ag atoms and Sn vacancies diffuse through the SnSe layer and form filaments. The successful emulation of synaptic functions by the layered chalcogenide memristor fabricated by the PLD method suggests the application potential in future neuromorphic computers.

18.
ACS Appl Mater Interfaces ; 12(36): 40510-40517, 2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32805812

RESUMEN

A capping layer is known to be critical for stabilizing the ferroelectric (FE) orthorhombic phase (o-phase) in a HfO2-based thin film. Here, vanadium oxide (VOx), a functional oxide exhibiting the insulator-metal transition, is used as a novel type of a capping layer for the Hf0.5Zr0.5O2 (HZO) thin film. It is demonstrated that the VOx capping layer (VCL) can enhance the FE properties of the HZO thin film comprehensively. Specifically, the HZO thin film with a VCL shows large remanent polarization (2Pr ≈36.9 µC/cm2), relatively small coercive field (Ec ≈1.09 MV/cm), high endurance (up to 109 cycles), and long retention (>105 seconds). The enhanced FE properties may be attributed to the VCL-induced stabilization of the FE o-phase and suppression of oxygen vacancies at the interface. Furthermore, the HZO thin film with a VCL exhibits a successive rightward shift of polarization-voltage (P-V) hysteresis loop as the temperature increases. This is well correlated with the insulator-metal transition in a VCL, which can modulate the interfacial built-in field and thus cause the P-V loop shift. It is therefore demonstrated that a VCL not only enhances the FE properties of HZO thin films but also provides a temperature degree of freedom to modulate the FE properties, which may open up a new pathway to develop HfO2-based FE memories with high performance and novel functionalities.

19.
ACS Nano ; 14(6): 7077-7084, 2020 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-32407078

RESUMEN

Integration of transition metal dichalcogenides (TMDs) on ferromagnetic materials (FM) may yield fascinating physics and promise for electronics and spintronic applications. In this work, high-temperature anomalous Hall effect (AHE) in the TMD ZrTe2 thin film using a heterostructure approach by depositing it on a ferrimagnetic insulator YIG (Y3Fe5O12, yttrium iron garnet) is demonstrated. In this heterostructure, significant anomalous Hall effect can be observed at temperatures up to at least 400 K, which is a record high temperature for the observation of AHE in TMDs, and the large RAHE is more than 1 order of magnitude larger than those previously reported values in topological insulators or TMD-based heterostructures. A complicated interface with additional ZrO2 and amorphous YIG layers is actually observed between ZrTe2 and YIG. The magnetization of interfacial reaction-induced ZrO2 and YIG is believed to play a crucial role in the induced high-temperature AHE in the ZrTe2. These results present a promising system for the spintronic device applications, and it may shed light on the designing approach to introduce magnetism to TMDs at room temperature.

20.
ACS Appl Mater Interfaces ; 12(1): 538-545, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31842539

RESUMEN

The introduction of plasmonic additives is a promising approach to boost the efficiency of the dye-sensitized solar cell (DSSC) since they may improve the light harvesting of a solar cell. Herein, we design broadband and strong plasmonic absorption Au@Ag@SiO2 nanocuboids (GSS NCs) as nanophotonic inclusions to achieve plasmon-enhanced DSSCs. These multiple-resonance absorptions arising from GSS NCs can be readily adjusted by altering their structures to complementarily match the absorption spectra of the dyes, especially in weak absorption zones. By subtly regulating the position of nanophotonic inclusions in the photoanodes, not only the plasmonic near-field enhancement but also far-field light scattering could be adequately developed to promote the light harvest and thus the efficiency of DSSCs. The resulting solar cells yield an average efficiency of 10.34%, with a champion value of 10.58%. The electromagnetic simulations are consistent with the experimental observations, further corroborating the synergistic effect of plasmonic improvement in these DSSCs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA