Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Crit Care Med ; 49(1): e53-e62, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33165026

RESUMEN

OBJECTIVES: To investigate the effect of mitochondrial damage-associated molecular patterns on the lung fluid homeostasis in experimental acute lung injury. DESIGN: Experimental study. SETTING: Research laboratory. SUBJECTS: Patients with acute respiratory distress syndrome and control subjects, wild-type C57BL/6 and formyl peptide receptor-1 gene knockout mice, and primary rat alveolar epithelial type II cells. INTERVENTIONS: Samples of bronchoalveolar lavage fluid and serum were obtained from patients and control subjects. Mice were intratracheally instilled with lipopolysaccharide and mitochondrial damage-associated molecular patterns. The primary rat alveolar epithelial type II cells were isolated and incubated with mitochondrial damage-associated molecular patterns. MEASUREMENTS AND MAIN RESULTS: Patients were divided into direct (pulmonary) and indirect (extrapulmonary) injury groups based on etiology. The release of mitochondrial peptide nicotinamide adenine dinucleotide dehydrogenase 1 in both bronchoalveolar lavage fluid and serum was induced in patients and was associated with etiology. In the lipopolysaccharide-induced lung injury, administration of mitochondrial damage-associated molecular patterns exacerbated the lung fluid imbalance, which was mitigated in formyl peptide receptor-1 knockout mice. Proteomic analysis of mouse lung tissues revealed the involvement of ion channels and tight junction proteins in this process. Treatment with mitochondrial damage-associated molecular patterns decreased the expression of epithelial sodium channel α, zonula occludens-1, and occludin via the formyl peptide receptor-1/p38 pathway in the primary rat alveolar epithelial type II cells. CONCLUSIONS: Mitochondrial damage-associated molecular patterns exacerbate lung fluid imbalance in the experimental acute lung injury model through formyl peptide receptor-1 signaling, the inhibition of which may prevent exacerbation of lung fluid imbalance induced by mitochondrial damage-associated molecular patterns. Thus, formyl peptide receptor-1 is a potential therapeutic target for acute respiratory distress syndrome.


Asunto(s)
Lesión Pulmonar Aguda/metabolismo , Pulmón/metabolismo , Mitocondrias/metabolismo , Receptores de Formil Péptido/metabolismo , Transducción de Señal , Lesión Pulmonar Aguda/patología , Animales , Líquido del Lavado Bronquioalveolar/química , Complejo I de Transporte de Electrón/metabolismo , Humanos , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratas , Síndrome de Dificultad Respiratoria/metabolismo , Mucosa Respiratoria/metabolismo
2.
Am J Physiol Lung Cell Mol Physiol ; 315(5): L775-L786, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30188748

RESUMEN

Acute lung injury (ALI) is characterized by alveolar epithelial damage and uncontrolled pulmonary inflammation. Mitochondrial damage-associated molecular patterns (DAMPs), including mitochondrial peptides [ N-formyl peptides (NFPs)], are released during cell injury and death and induce inflammation by unclear mechanisms. In this study, we have investigated the role of mitochondrial DAMPs (MTDs), especially NFPs, in alveolar epithelial injury and lung inflammation. In murine models of ALI, high levels of mitochondrial NADH dehydrogenase 1 in bronchoalveolar lavage fluid (BALF) were associated with lung injury scores and increased formyl peptide receptor (FPR)-1 expression in the alveolar epithelium. Cyclosporin H (CsH), a specific inhibitor of FPR1, inhibited lung inflammation in the ALI models. Both MTDs and NFPs upon intratracheal challenge caused accumulation of neutrophils into the alveolar space with elevated BALF levels of mouse chemokine KC, interleukin-1ß, and nitric oxide and increased pulmonary FPR-1 levels. CsH significantly attenuated MTDs or NFP-induced inflammatory lung injury and activation of MAPK and AKT pathways. FPR1 expression was present in rat primary alveolar epithelial type II cells (AECIIs) and was increased by MTDs. CsH inhibited MTDs or NFP-induced CINC-1/IL-8 release and phosphorylation of p38, JNK, and AKT in rat AECII and human cell line A549. Inhibitors of MAPKs and AKT also suppressed MTD-induced IL-8 release and NF-κB activation. Collectively, our data indicate an important role of the alveolar epithelium in initiating immune responses to MTDs released during ALI. The potential mechanism may involve increase of IL-8 production in MTD-activated AECII through FPR-1 and its downstream MAPKs, AKT, and NF-κB pathways.


Asunto(s)
Lesión Pulmonar Aguda/etiología , Células Epiteliales Alveolares/inmunología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fragmentos de Péptidos/farmacología , Neumonía/etiología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Formil Péptido/metabolismo , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/patología , Animales , Mediadores de Inflamación/metabolismo , Interleucina-8/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Mitocondrias/metabolismo , FN-kappa B/metabolismo , Fosforilación , Neumonía/metabolismo , Neumonía/patología , Ratas , Ratas Sprague-Dawley , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA