Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hepatology ; 78(5): 1492-1505, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36680394

RESUMEN

BACKGROUND AND AIMS: NASH has emerged as a leading cause of chronic liver disease. However, the mechanisms that govern NASH fibrosis remain largely unknown. CREBZF is a CREB/ATF bZIP transcription factor that causes hepatic steatosis and metabolic defects in obesity. APPROACH AND RESULTS: Here, we show that CREBZF is a key mechanism of liver fibrosis checkpoint that promotes hepatocyte injury and exacerbates diet-induced NASH in mice. CREBZF deficiency attenuated liver injury, fibrosis, and inflammation in diet-induced mouse models of NASH. CREBZF increases HSC activation and fibrosis in a hepatocyte-autonomous manner by stimulating an extracellular matrix protein osteopontin, a key regulator of fibrosis. The inhibition of miR-6964-3p mediates CREBZF-induced production and secretion of osteopontin in hepatocytes. Adeno-associated virus -mediated rescue of osteopontin restored HSC activation, liver fibrosis, and NASH progression in CREBZF-deficient mice. Importantly, expression levels of CREBZF are increased in livers of diet-induced NASH mouse models and humans with NASH. CONCLUSIONS: Osteopontin signaling by CREBZF represents a previously unrecognized intrahepatic mechanism that triggers liver fibrosis and contributes to the severity of NASH.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Osteopontina , Animales , Humanos , Ratones , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Modelos Animales de Enfermedad , Hígado Graso/genética , Hígado Graso/metabolismo , Fibrosis , Hepatocitos/metabolismo , Hepatocitos/patología , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática/patología , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Osteopontina/genética , Osteopontina/metabolismo
2.
Cardiovasc Drugs Ther ; 37(5): 849-863, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-35471717

RESUMEN

PURPOSE: Endothelial progenitor cells (EPCs) play a critical role in repairing damaged vessels and triggering ischemic angiogenesis, but their number is reduced and function is impaired under diabetic conditions. Improving EPC function has been considered a promising strategy to ameliorate diabetic vascular complications. In the present study, we aim to investigate whether and how CXCR7 agonist TC14012 promotes the angiogenic function of diabetic EPCs. METHODS: High glucose (HG) treatment was used to mimic the hyperglycemia in diabetes. Tube formation, cell scratch recovery and transwell assay, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, and cleaved-caspase3 expression were used to evaluate the angiogenic capability, cell migration, and apoptosis of EPCs, respectively. Hind limb ischemia (HLI) model was used to appraise the ability of TC14012 in promoting diabetic ischemic angiogenesis in vivo. RESULTS: HG treatment impaired EPC tube formation and migration, and induced EPC apoptosis and oxidative damage, while TC14012 rescued tube formation and migration, and prevented HG-induced apoptosis and oxidative damage of EPCs. Furthermore, these beneficial effects of TC14012 on EPCs were attenuated by specific siRNAs against CXCR7, validating that CXCR7 is a functional target of TC14012 in EPCs. Mechanistic studies demonstrated that HG treatment reduced CXCR7 expression in EPCs, and impaired Akt and endothelial nitric oxide synthase (eNOS) phosphorylation and nitric oxide (NO) production; similarly, these signal impairments in HG-exposed EPCs could be rescued by TC14012. However, the protective effects of TC14012 on tube formation and migration, Akt and eNOS phosphorylation, and NO production in HG-treated EPCs were almost completely abolished by siRNAs against CXCR7 or Akt specific inhibitor wortmannin. More importantly, in vivo study showed that TC14012 administration enhanced blood perfusion recovery and angiogenesis in the ischemic hind limb and increased the EPC number in peripheral circulation of db/db mice, demonstrating the capability of TC14012 in promoting EPC mobilization and ischemia angiogenic function. CONCLUSION: TC14012 can prevent EPCs from HG-induced dysfunction and apoptosis, improve eNOS activity and NO production via CXCR7/Akt signal pathway, and promote EPC mobilization and diabetic ischemia angiogenesis.


Asunto(s)
Diabetes Mellitus , Células Progenitoras Endoteliales , Ratones , Animales , Células Progenitoras Endoteliales/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Isquemia/tratamiento farmacológico , Isquemia/complicaciones , Isquemia/metabolismo , Transducción de Señal , Movimiento Celular , Neovascularización Fisiológica
3.
J Cell Mol Med ; 25(2): 652-665, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33215883

RESUMEN

One of the major reasons for the delayed wound healing in diabetes is the dysfunction of endothelial progenitor cells (EPCs) induced by hyperglycaemia. Improvement of EPC function may be a potential strategy for accelerating wound healing in diabetes. Procyanidin B2 (PCB2) is one of the major components of procyanidins, which exhibits a variety of potent pharmacological activities. However, the effects of PCB2 on EPC function and diabetic wound repair remain elusive. We evaluated the protective effects of PCB2 in EPCs with high glucose (HG) treatment and in a diabetic wound healing model. EPCs derived from human umbilical cord blood were treated with HG. The results showed that PCB2 significantly preserved the angiogenic function, survival and migration abilities of EPCs with HG treatment, and attenuated HG-induced oxidative stress of EPCs by scavenging excessive reactive oxygen species (ROS). A mechanistic study found the protective role of PCB2 is dependent on activating nuclear factor erythroid 2-related factor 2 (Nrf2). PCB2 increased the expression of Nrf2 and its downstream antioxidant genes to attenuate the oxidative stress induced by HG in EPCs, which were abolished by knockdown of Nrf2 expression. An in vivo study showed that intraperitoneal administration of PCB2 promoted wound healing and angiogenesis in diabetic mice, which was accompanied by a significant reduction in ROS level and an increase in circulating EPC number. Taken together, our results indicate that PCB2 treatment accelerates wound healing and increases angiogenesis in diabetic mice, which may be mediated by improving the mobilization and function of EPCs.


Asunto(s)
Biflavonoides/farmacología , Catequina/farmacología , Células Progenitoras Endoteliales/efectos de los fármacos , Células Progenitoras Endoteliales/metabolismo , Proantocianidinas/farmacología , Animales , Apoptosis/efectos de los fármacos , Western Blotting , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Citometría de Flujo , Humanos , Lentivirus/genética , Masculino , Malondialdehído/metabolismo , Ratones , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Reacción en Cadena en Tiempo Real de la Polimerasa
4.
J Cell Mol Med ; 25(6): 3091-3102, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33599110

RESUMEN

Diabetic vascular complications are closely associated with long-term vascular dysfunction and poor neovascularization. Endothelial progenitor cells (EPCs) play pivotal roles in maintaining vascular homeostasis and triggering angiogenesis, and EPC dysfunction contributes to defective angiogenesis and resultant diabetic vascular complications. Fibroblast growth factor 21 (FGF21) has received substantial attention as a potential therapeutic agent for diabetes via regulating glucose and lipid metabolism. However, the effects of FGF21 on diabetic vascular complications remain unclear. In the present study, the in vivo results showed that FGF21 efficiently improved blood perfusion and ischaemic angiogenesis in both type 1 and type 2 diabetic mice, and these effects were accompanied by enhanced EPC mobilization and infiltration into ischaemic muscle tissues and increases in plasma stromal cell-derived factor-1 concentration. The in vitro results revealed that FGF21 directly prevented EPC damage induced by high glucose, and the mechanistic studies demonstrated that nicotinamide adenine dinucleotide (NAD+ ) was dramatically decreased in EPCs challenged with high glucose, whereas FGF21 treatment significantly increased NAD+ content in an AMPK-dependent manner, resulting in improved angiogenic capability of EPCs. These results indicate that FGF21 promotes ischaemic angiogenesis and the angiogenic ability of EPCs under diabetic conditions by activating the AMPK/NAD+ pathway.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Células Progenitoras Endoteliales/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , NAD/metabolismo , Neovascularización Fisiológica , Animales , Biomarcadores , Diabetes Mellitus Experimental , Glucosa/metabolismo , Miembro Posterior/irrigación sanguínea , Humanos , Hiperglucemia/etiología , Hiperglucemia/metabolismo , Inmunofenotipificación , Isquemia/metabolismo , Masculino , Ratones , Modelos Biológicos , Transducción de Señal
5.
J Cell Mol Med ; 24(10): 5605-5614, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32239650

RESUMEN

Endothelial progenitor cells (EPCs) are able to trigger angiogenesis, and pro-inflammatory cytokines have beneficial effects on angiogenesis under physiological and pathological conditions. C-X-C chemokine receptor type 7 (CXCR-7), receptor for stromal cell-derived factor-1, plays a critical role in enhancing EPC angiogenic function. Here, we examined whether CXCR7 mediates the pro-angiogenic effects of the inflammatory cytokine interleukin-1ß (IL-1ß) in EPCs. EPCs were isolated by density gradient centrifugation and angiogenic capability was evaluated in vitro by Matrigel capillary formation assay and fibrin gel bead assay. IL-1ß elevated CXCR7 expression at both the transcriptional and translational levels in a dose- and time-dependent manner, and blockade of the nuclear translocation of NF-κB dramatically attenuated the IL-1ß-mediated up-regulation of CXCR7 expression. IL-1ß stimulation significantly promoted EPCs tube formation and this effect was largely impaired by CXCR7-siRNA transfection. IL-1ß treatment stimulated extracellular signal-regulated kinase 1/2 (Erk1/2) phosphorylation, and inhibition of Erk1/2 phosphorylation partially impaired IL-1ß-induced tube formation of EPCs but without significant effects on CXCR7 expression. Moreover, blocking NF-κB had no significant effects on IL-1ß-stimulated Erk1/2 phosphorylation. These findings indicate that CXCR7 plays an important role in the IL-1ß-enhanced angiogenic capability of EPCs and antagonizing CXCR7 is a potential strategy for inhibiting angiogenesis under inflammatory conditions.


Asunto(s)
Células Progenitoras Endoteliales/metabolismo , Interleucina-1beta/metabolismo , FN-kappa B/metabolismo , Neovascularización Patológica/metabolismo , Receptores CCR7/metabolismo , Biomarcadores , Células Cultivadas , Células Progenitoras Endoteliales/efectos de los fármacos , Humanos , Interleucina-1beta/farmacología , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Modelos Biológicos , Transducción de Señal/efectos de los fármacos
6.
Circ Res ; 120(5): e7-e23, 2017 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-28137917

RESUMEN

RATIONALE: Endothelial progenitor cells (EPCs) respond to stromal cell-derived factor 1 (SDF-1) through chemokine receptors CXCR7 and CXCR4. Whether SDF-1 receptors involves in diabetes mellitus-induced EPCs dysfunction remains unknown. OBJECTIVE: To determine the role of SDF-1 receptors in diabetic EPCs dysfunction. METHODS AND RESULTS: CXCR7 expression, but not CXCR4 was reduced in EPCs from db/db mice, which coincided with impaired tube formation. Knockdown of CXCR7 impaired tube formation of EPCs from normal mice, whereas upregulation of CXCR7 rescued angiogenic function of EPCs from db/db mice. In normal EPCs treated with oxidized low-density lipoprotein or high glucose also reduced CXCR7 expression, impaired tube formation, and increased oxidative stress and apoptosis. The damaging effects of oxidized low-density lipoprotein or high glucose were markedly reduced by SDF-1 pretreatment in EPCs transduced with CXCR7 lentivirus but not in EPCs transduced with control lentivirus. Most importantly, EPCs transduced with CXCR7 lentivirus were superior to EPCs transduced with control lentivirus for therapy of ischemic limbs in db/db mice. Mechanistic studies demonstrated that oxidized low-density lipoprotein or high glucose inhibited protein kinase B and glycogen synthase kinase-3ß phosphorylation, nuclear export of Fyn and nuclear localization of nuclear factor (erythroid-derived 2)-like 2 (Nrf2), blunting Nrf2 downstream target genes heme oxygenase-1, NAD(P)H dehydrogenase (quinone 1) and catalase, and inducing an increase in EPC oxidative stress. This destructive cascade was blocked by SDF-1 treatment in EPCs transduced with CXCR7 lentivirus. Furthermore, inhibition of phosphatidylinositol 3-kinase/protein kinase B prevented SDF-1/CXCR7-mediated Nrf2 activation and blocked angiogenic repair. Moreover, Nrf2 knockdown almost completely abolished the protective effects of SDF-1/CXCR7 on EPC function in vitro and in vivo. CONCLUSIONS: Elevated expression of CXCR7 enhances EPC resistance to diabetes mellitus-induced oxidative damage and improves therapeutic efficacy of EPCs in treating diabetic limb ischemia. The benefits of CXCR7 are mediated predominantly by a protein kinase B/glycogen synthase kinase-3ß/Fyn pathway via increased activity of Nrf2.


Asunto(s)
Diabetes Mellitus/metabolismo , Células Progenitoras Endoteliales/fisiología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Isquemia/metabolismo , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Receptores CXCR/biosíntesis , Animales , Células Cultivadas , Diabetes Mellitus/patología , Técnicas de Silenciamiento del Gen , Células HEK293 , Miembro Posterior/irrigación sanguínea , Miembro Posterior/metabolismo , Miembro Posterior/patología , Humanos , Isquemia/patología , Masculino , Ratones , Ratones Transgénicos , Factor 2 Relacionado con NF-E2/metabolismo , Neovascularización Fisiológica/fisiología , Estrés Oxidativo/fisiología , Proteínas Proto-Oncogénicas c-akt/metabolismo
7.
J Cell Mol Med ; 22(1): 89-100, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28799229

RESUMEN

Recently, the dipeptidyl peptidase-4 (DPP-4) inhibitor sitagliptin, a major anti-hyperglycaemic agent, has received substantial attention as a therapeutic target for cardiovascular diseases via enhancing the number of circulating endothelial progenitor cells (EPCs). However, the direct effects of sitagliptin on EPC function remain elusive. In this study, we evaluated the proangiogenic effects of sitagliptin on a diabetic hind limb ischaemia (HLI) model in vivo and on EPC culture in vitro. Treatment of db/db mice with sitagliptin (Januvia) after HLI surgery efficiently enhanced ischaemic angiogenesis and blood perfusion, which was accompanied by significant increases in circulating EPC numbers. EPCs derived from the bone marrow of normal mice were treated with high glucose to mimic diabetic hyperglycaemia. We found that high glucose treatment induced EPC apoptosis and tube formation impairment, which were significantly prevented by sitagliptin pretreatment. A mechanistic study found that high glucose treatment of EPCs induced dramatic increases in oxidative stress and apoptosis; pretreatment of EPCs with sitagliptin significantly attenuated high glucose-induced apoptosis, tube formation impairment and oxidative stress. Furthermore, we found that sitagliptin restored the basal autophagy of EPCs that was impaired by high glucose via activating the AMP-activated protein kinase/unc-51-like autophagy activating kinase 1 signalling pathway, although an autophagy inhibitor abolished the protective effects of sitagliptin on EPCs. Altogether, the results indicate that sitagliptin-induced preservation of EPC angiogenic function results in an improvement of diabetic ischaemia angiogenesis and blood perfusion, which are most likely mediated by sitagliptin-induced prevention of EPC apoptosis via augmenting autophagy.


Asunto(s)
Autofagia , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Células Progenitoras Endoteliales/patología , Isquemia/tratamiento farmacológico , Neovascularización Fisiológica , Fosfato de Sitagliptina/uso terapéutico , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Autofagia/efectos de los fármacos , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/patología , Supervivencia Celular/efectos de los fármacos , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/patología , Células Progenitoras Endoteliales/efectos de los fármacos , Células Progenitoras Endoteliales/metabolismo , Glucosa/toxicidad , Miembro Posterior/irrigación sanguínea , Isquemia/complicaciones , Isquemia/patología , Masculino , Ratones , Neovascularización Fisiológica/efectos de los fármacos , Perfusión , Especies Reactivas de Oxígeno/metabolismo , Flujo Sanguíneo Regional/efectos de los fármacos , Transducción de Señal , Fosfato de Sitagliptina/farmacología
8.
J Cell Mol Med ; 21(10): 2298-2307, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28374486

RESUMEN

Endothelial progenitor cells (EPCs) play a capital role in angiogenesis via directly participating in neo-vessel formation and secreting pro-angiogenic factors. Stromal cell-derived factor 1 (SDF-1) and its receptor CXCR4 play a critical role in the retention and quiescence of EPCs within its niche in the bone marrow. Disturbing the interaction between SDF-1 and CXCR4 is an effective strategy for EPC mobilization. We developed a novel CXCR4 antagonist P2G, a mutant protein of SDF-1ß with high antagonistic activity against CXCR4 and high potency in enhancing ischaemic angiogenesis and blood perfusion. However, its direct effects on ischaemic tissue remain largely unknown. In this study, P2G was found to possess a robust capability to promote EPC infiltration and incorporation in neo-vessels, enhance the expression and function of pro-angiogenic factors, such as SDF-1, vascular endothelial growth factor and matrix metalloprotein-9, and activate cell signals involved in angiogenesis, such as proliferating cell nuclear antigen, protein kinase B (Akt), extracellular regulated protein kinases and mammalian target of rapamycin, in ischaemic tissue. Moreover, P2G can attenuate fibrotic remodelling to facilitate the recovery of ischaemic tissue. The capability of P2G in direct augmenting ischaemic environment for angiogenesis suggests that it is a potential candidate for the therapy of ischaemia diseases.


Asunto(s)
Vasos Sanguíneos/efectos de los fármacos , Isquemia/prevención & control , Péptidos/farmacología , Receptores CXCR4/antagonistas & inhibidores , Animales , Vasos Sanguíneos/metabolismo , Movimiento Celular/efectos de los fármacos , Quimiocina CXCL12/química , Quimiocina CXCL12/metabolismo , Células Progenitoras Endoteliales/efectos de los fármacos , Células Progenitoras Endoteliales/metabolismo , Isquemia/metabolismo , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/metabolismo
9.
Exp Cell Res ; 343(2): 135-147, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-27090017

RESUMEN

MicroRNAs (miRNAs) are a class of small non-coding RNAs that function as critical gene regulators by targeting mRNAs for translational repression or degradation. In this study, we showed that the expression level of miR-133b was decreased, while Sirt1 mRNA expression levels were increased in hepatocellular carcinoma (HCC) and cell lines, and we identified Sirt1 as a novel direct target of miR-133b. The over-expression of miR-133b suppressed Sirt1 expression. In addition, miR-133b over-expression resulted in attenuating HCC cell proliferation and invasion together with apoptosis increase in vitro. HepG2 cell transplantation revealed that up-regulation of miR-133b could inhibit HCC tumor genesis in vivo. Forced expression of Sirt1 partly rescued the effect of miR-133b in vitro. Furthermore, our study showed that miR-133b over-expression or Sirt1 down-regulation elevated E-cadherin expression, and repressed glypican-3 (GPC3) and the anti-apoptotic proteins (Bcl-2, Bcl-xL, and Mcl-1) expression. The inhibition of GPC3 expression repressed Bcl-2, Bcl-xL, and Mcl-1 expression, and elevated E-cadherin expression. Moreover, the Sirt1 up-regulation resulted in increases in HCC cell proliferation and invasion together with decreases apoptosis, and increases in the cytosolic accumulation and nuclear translocation of the transcription factor ß-catenin in vitro. But the effect of Sirt1 up-regulation was partly reversed by GPC3 down-regulation in vitro. Taken together, these findings provide insight into the role and mechanism of miR-133b in regulating HCC cell proliferation, invasion and apoptosis via the miR-133b/Sirt1/GPC3/Wnt ß-catenin axis, and miR-133b may serve as a potential therapeutic target in HCC in the future.


Asunto(s)
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Progresión de la Enfermedad , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , MicroARNs/metabolismo , Sirtuina 1/metabolismo , Animales , Apoptosis , Secuencia de Bases , Línea Celular Tumoral , Proliferación Celular , Regulación hacia Abajo/genética , Regulación Neoplásica de la Expresión Génica , Glipicanos/metabolismo , Humanos , Ratones Endogámicos BALB C , Ratones Desnudos , MicroARNs/genética , Modelos Biológicos , Invasividad Neoplásica , Regulación hacia Arriba/genética , Vía de Señalización Wnt
10.
Microbes Infect ; : 105381, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38914369

RESUMEN

BACKGROUND: In both lung adenocarcinoma (LUAD) and severe acute respiratory syndrome (SARS), uncontrolled inflammation can be detected in lung tissue. The PDZ-binding motif (PBM) in the SARS-CoV-1 E protein has been demonstrated to be a virulence factor that induces a cytokine storm. METHODS: To identify gene expression fluctuations induced by PBM, microarray sequencing data of lung tissue infected with wild-type (SARS-CoV-1-E-wt) or recombinant virus (SARS-CoV-1-E-mutPBM) were analyzed, followed by functional enrichment analysis. To understand the role of the screened genes in LUAD, overall survival and immune correlation were calculated. RESULTS: A total of 12 genes might participate in the initial and developmental stages of LUAD through expression variation and mutation. Moreover, dysregulation of a total of 12 genes could lead to a poorer prognosis. In addition, the downregulation of MAMDC2 and ITGA8 by PBM could also affect patient prognosis. Although the conserved PBM (-D-L-L-V-) can be found at the end of the carboxyl terminus in multiple E proteins of coronaviruses, the specific function of each protein depends on the entire amino acid sequence. CONCLUSIONS: In summary, PBM containing the SARS-CoV-1 E protein promoted the carcinogenesis of LUAD by dysregulating important gene expression profiles and subsequently influencing the immune response and overall prognosis.

11.
Front Cardiovasc Med ; 11: 1337679, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638885

RESUMEN

Biomechanical forces, including vascular shear stress, cyclic stretching, and extracellular matrix stiffness, which influence mechanosensitive channels in the plasma membrane, determine cell function in atherosclerosis. Being highly associated with the formation of atherosclerotic plaques, endocytosis is the key point in molecule and macromolecule trafficking, which plays an important role in lipid transportation. The process of endocytosis relies on the mobility and tension of the plasma membrane, which is sensitive to biomechanical forces. Several studies have advanced the signal transduction between endocytosis and biomechanics to elaborate the developmental role of atherosclerosis. Meanwhile, increased plaque growth also results in changes in the structure, composition and morphology of the coronary artery that contribute to the alteration of arterial biomechanics. These cross-links of biomechanics and endocytosis in atherosclerotic plaques play an important role in cell function, such as cell phenotype switching, foam cell formation, and lipoprotein transportation. We propose that biomechanical force activates the endocytosis of vascular cells and plays an important role in the development of atherosclerosis.

12.
Bioact Mater ; 42: 587-612, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39314863

RESUMEN

Demand for biliary stents has expanded with the increasing incidence of biliary disease. The implantation of plastic or self-expandable metal stents can be an effective treatment for biliary strictures. However, these stents are nondegradable and prone to restenosis. Surgical removal or replacement of the nondegradable stents is necessary in cases of disease resolution or restenosis. To overcome these shortcomings, improvements were made to the materials and surfaces used for the stents. First, this paper reviews the advantages and limitations of nondegradable stents. Second, emphasis is placed on biodegradable polymer and biodegradable metal stents, along with functional coatings. This also encompasses tissue engineering & 3D-printed stents were highlighted. Finally, the future perspectives of biliary stents, including pro-epithelialization coatings, multifunctional coated stents, biodegradable shape memory stents, and 4D bioprinting, were discussed.

13.
Bioact Mater ; 35: 306-329, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38362138

RESUMEN

Objectives: To examine the 16-year developmental history, research hotspots, and emerging trends of zinc-based biodegradable metallic materials from the perspective of structural and temporal dynamics. Methods: The literature on zinc-based biodegradable metallic materials in WoSCC was searched. Historical characteristics, the evolution of active topics and development trends in the field of zinc-based biodegradable metallic materials were analyzed using the bibliometric tools CiteSpace and HistCite. Results: Over the past 16 years, the field of zinc-based biodegradable metal materials has remained in a hotspot stage, with extensive scientific collaboration. In addition, there are 45 subject categories and 51 keywords in different research periods, and 80 papers experience citation bursts. Keyword clustering anchored 3 emerging research subfields, namely, #1 plastic deformation #4 additive manufacturing #5 surface modification. The keyword alluvial map shows that the longest-lasting research concepts in the field are mechanical property, microstructure, corrosion behavior, etc., and emerging keywords are additive manufacturing, surface modification, dynamic recrystallization, etc. The most recent research on reference clustering has six subfields. Namely, #0 microstructure, #2 sem, #3 additive manufacturing, #4 laser powder bed fusion, #5 implant, and #7 Zn-1Mg. Conclusion: The results of the bibliometric study provide the current status and trends of research on zinc-based biodegradable metallic materials, which can help researchers identify hot spots and explore new research directions in the field.

14.
PLoS One ; 18(9): e0288225, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37672557

RESUMEN

With the rapidly increasing concern on environmental pollution and resource shortage, remanufactured products attract many attentions. In order to determine the optimal production and pricing strategy, we construct decision models for both single-product market and mixed-product market. Consumers' different preferences for new products and remanufactured products are considered. First, we construct pricing models for a single-product market, and achieve a judging condition to determine the optimal strategy. Second, we develop a pricing model for a multiple-product market and put forward a suppose to show that the multiple-product strategy is not always optimal. Finally, numerical illustrations are designed to examine the impacts of the two crucial factors and obtain the dominant regions for each strategy. By introducing an emission sensitive demand, we show the superiority of the remanufactured product when the extra demand attracted by the emission saving is large.

15.
Zebrafish ; 20(3): 95-102, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37229597

RESUMEN

The liver plays a very important role in physiological processes of the human body. Liver regeneration has developed into an important area of study in liver disease. The Mtz (metronidazole)/NTR (nitroreductase)-mediated cell ablation system has been widely used to study the processes and mechanisms of liver injury and regeneration. However, high concentrations and toxic side effects of Mtz severely limit the application of the Mtz/NTR system. Therefore, screening new analogs to replace Mtz has become an important means to optimize the NTR ablation system. In this study, we screened five Mtz analogs including furazolidone, ronidazole, ornidazole, nitromide, and tinidazole. We compared their toxicity on the transgenic fish line Tg(fabp10a: mCherry-NTR) and their specific ablation ability on liver cells. The results showed that Ronidazole at a lower concentration (2 mM) had the same ability to ablate liver cells comparable with that of Mtz (10 mM), almost without toxic side effects on juvenile fish. Further study found that zebrafish hepatocyte injury caused by the Ronidazole/NTR system achieved the same liver regenerative effect as the Mtz/NTR system. The above results show that Ronidazole can replace Mtz with NTR to achieve superior damage and ablation effects in zebrafish liver.


Asunto(s)
Profármacos , Pez Cebra , Animales , Humanos , Pez Cebra/fisiología , Metronidazol/toxicidad , Profármacos/metabolismo , Ronidazol , Larva/metabolismo , Animales Modificados Genéticamente , Hepatocitos/metabolismo , Nitrorreductasas/metabolismo
16.
J Cell Biochem ; 113(4): 1437-46, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22173725

RESUMEN

Stromal cell-derived factor 1 (SDF-1) is a critical regulator of endothelial progenitor cells (EPCs) mediated physiological and pathologic angiogenesis. It was considered to act via its unique receptor CXCR4 for a long time. CXCR7 is a second, recently identified receptor for SDF-1, and its role in human EPCs is unclear. In present study, CXCR7 was found to be scarcely expressed on the surface of human EPCs derived from cord blood, but considerable intracellular CXCR7 was detected, which differs from that on EPCs derived from rat bone marrow. CXCR7 failed to support SDF-1 induced human EPCs migration, proliferation, or nitric oxide (NO) production, but mediated human EPCs survival exclusively. Besides that, CXCR7 mediated EPCs tube formation along with CXCR4. Blocking CXCR7 with its antagonist CCX733 impaired SDF-1/CXCR4 induced EPCs adhesion to active HUVECs and trans-endothelial migration. Those results suggested that CXCR7 plays an important role in human cord blood derived EPCs in response to SDF-1.


Asunto(s)
Proliferación Celular , Supervivencia Celular/fisiología , Endotelio Vascular/citología , Neovascularización Fisiológica , Receptores CXCR/fisiología , Western Blotting , Movimiento Celular/fisiología , Células Cultivadas , Quimiocina CXCL12/fisiología , Citometría de Flujo , Humanos , Receptores CXCR4/fisiología
17.
Anal Methods ; 14(14): 1420-1429, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35315459

RESUMEN

Growth differentiation factor-15 (GDF-15) is a member of the transforming growth factor-ß family. GDF-15 is overexpressed in cardiovascular diseases and has become a novel biomarker for these diseases. In this study, we fabricated a label-free electrochemical immunosensor for sensitive detection of GDF-15. Briefly, a three-dimensional braided composite of AuPtCu-SWCNTs@MoS2-rGO (denoted A@M), which served as a label-free immunosensor platform, was obtained by wrapping single-walled carbon nanotubes (SWCNTs) with trimetallic nanoflowers (AuPtCu NFs) woven on a three-dimensional network nanostructure composed of Molybdenum disulfide (MoS2) and reduced graphene oxide (rGO) nanosheets. This optimization improved the ability of the platform to immobilize antibodies, accelerated the reduction of hydrogen peroxide, and promoted the migration rate of electrons on the electrode surface, thereby further amplifying the electrical signal and improving the sensitivity. The constructed sensor exhibited high sensitivity over a wide linear range from 1 pg mL-1 to 50 ng mL-1, with a low detection limit of 0.825 pg mL-1 for GDF-15. The fabricated label-free immunosensor exhibits satisfactory reproducibility, selectivity, and stability. The detection of actual samples was successful, enabling a broad scope of application in the early diagnosis, prognosis, and treatment of cardiovascular diseases.


Asunto(s)
Técnicas Biosensibles , Enfermedades Cardiovasculares , Nanotubos de Carbono , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Grafito , Factor 15 de Diferenciación de Crecimiento , Humanos , Inmunoensayo/métodos , Límite de Detección , Molibdeno/química , Nanotubos de Carbono/química , Reproducibilidad de los Resultados
18.
Ther Adv Chronic Dis ; 13: 20406223221135011, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36387760

RESUMEN

Background: Hypertension-mediated organ damage (HMOD) is an emerging problem among young adults. The potential role of chronic immune-mediated inflammation in the pathogenesis of HMOD is increasingly being recognized. High-mobility group box 2 (HMGB2) is known for its role in the modulation of innate immunity and exerts signaling functions that affect various inflammatory diseases. However, the association between HMGB2 and HMOD in young adults remains unclear. Objectives: The aim of this study was to explore the association between HMGB2 and subclinical HMOD in young adults. Design: This is a cross-sectional study. Methods: Body composition, carotid ultrasound, carotid-femoral PWV (cf-PWV) measures, echocardiography, serum HMGB2 levels, and serum classic cardiometabolic risk factors were measured in 988 untreated young adults. We estimated the risk related to serum HMGB2 using multivariable-adjusted linear and logistic regression models. Then, we conducted a pathway overrepresentation analysis to examine which key biological pathways may be linked to serum HMGB2 in young adults with HMOD. Results: Among the 988 untreated young adults, we identified four distinct hypertension phenotypes: normotension (40.0%), white-coat hypertension (16.0%), masked hypertension (20.9%), and sustained hypertension (23.1%). High levels of serum HMGB2 were related to increased carotid intima-media thickness (cIMT) and left ventricular mass index (LVMI), higher cf-PWV and blood pressure, and a lower estimated glomerular filtration rate (eGFR). Linear regression analysis showed that serum HMGB2 was positively associated with cf-PWV and negatively associated with eGFR in all patients. Multivariate analysis showed that high levels of serum HMGB2 were associated with high odds of subclinical HMOD (damage in at least one organ). Biological pathway analysis indicated that patients with high serum HMGB2 levels had increased activity of pathways, related to endothelial dysfunction, inflammatory processes, and atherosclerosis. Conclusion: High serum concentrations of HMGB2 are associated with an increased risk of subclinical HMOD in untreated young adults.

19.
Cells ; 11(23)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36497087

RESUMEN

The impairment in endothelial progenitor cell (EPC) functions results in dysregulation of vascular homeostasis and dysfunction of the endothelium under diabetic conditions. Improving EPC function has been considered as a promising strategy for ameliorating diabetic vascular complications. Liraglutide has been widely used as a therapeutic agent for diabetes. However, the effects and mechanisms of liraglutide on EPC dysfunction remain unclear. The capability of liraglutide in promoting blood perfusion and angiogenesis under diabetic conditions was evaluated in the hind limb ischemia model of diabetic mice. The effect of liraglutide on the angiogenic function of EPC was evaluated by cell scratch recovery assay, tube formation assay, and nitric oxide production. RNA sequencing was performed to assess the underlying mechanisms. Liraglutide enhanced blood perfusion and angiogenesis in the ischemic hindlimb of db/db mice and streptozotocin-induced type 1 diabetic mice. Additionally, liraglutide improved tube formation, cell migration, and nitric oxide production of high glucose (HG)-treated EPC. Assessment of liraglutide target pathways revealed a network of genes involved in antioxidant activity. Further mechanism study showed that liraglutide decreased the production of reactive oxygen species and increased the activity of nuclear factor erythroid 2-related factor 2 (Nrf2). Nrf2 deficiency attenuated the beneficial effects of liraglutide on improving EPC function and promoting ischemic angiogenesis under diabetic conditions. Moreover, liraglutide activates Nrf2 through an AKT/GSK3ß/Fyn pathway, and inhibiting this pathway abolished liraglutide-induced Nrf2 activation and EPC function improvement. Overall, these results suggest that Liraglutide represents therapeutic potential in promoting EPC function and ameliorating ischemic angiogenesis under diabetic conditions, and these beneficial effects relied on Nrf2 activation.


Asunto(s)
Diabetes Mellitus Experimental , Células Progenitoras Endoteliales , Liraglutida , Factor 2 Relacionado con NF-E2 , Animales , Ratones , Diabetes Mellitus Experimental/metabolismo , Células Progenitoras Endoteliales/metabolismo , Isquemia/metabolismo , Liraglutida/farmacología , Liraglutida/uso terapéutico , Óxido Nítrico/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo
20.
Oxid Med Cell Longev ; 2022: 1122494, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35585884

RESUMEN

Diabetic cardiomyopathy (DCM) is considered to be a critical contributor to the development of heart failure. Empagliflozin (EMPA), a sodium-glucose cotransporter 2 inhibitor, has been shown to prevent cardiovascular events and reduce the incidence of heart failure in randomized clinical trials. However, the mechanism of how EMPA prevents DCM is poorly understood. To study the potential mechanisms involved in the therapeutic effects of EMPA, we assessed the protective effects of EMPA on myocardial injury in type 2 diabetic db/db mice and H9C2 cardiomyocytes. 9-10-week-old male db/db mice were treated with EMPA (10 mg/kg) via oral gavage daily for 20 weeks. Afterward, cardiac function of treated mice was evaluated by echocardiography, and pathological changes in heart tissues were determined by histopathological examination and western blot assay. EMPA markedly reduced blood glucose levels, improved insulin tolerance, and enhanced insulin sensitivity of db/db mice. In addition, EMPA significantly prevented cardiac dysfunction, inhibited cardiac hypertrophy and fibrosis, and reduced glycogen deposition in heart tissues. Furthermore, EMPA improved diabetes-induced oxidative stress and mitochondrial dysfunction in both heart tissues of db/db mice and palmitate exposed H9C2 cells. EMPA significantly increased the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream genetic targets in cardiac tissue of type 2 diabetic db/db mice and H9C2 cells. EMPA also downregulated the expression of mitochondrial fission-related proteins and upregulated the expression of mitochondrial fusion-related proteins. Collectively, these findings indicate that EMPA may prevent DCM via attenuating oxidative stress and improving mitochondrial function in heart tissue.


Asunto(s)
Diabetes Mellitus Tipo 2 , Cardiomiopatías Diabéticas , Insuficiencia Cardíaca , Animales , Compuestos de Bencidrilo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Cardiomiopatías Diabéticas/metabolismo , Glucósidos , Insuficiencia Cardíaca/metabolismo , Masculino , Ratones , Mitocondrias/metabolismo , Miocitos Cardíacos/metabolismo , Estrés Oxidativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA