Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Methods ; 202: 103-109, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34252532

RESUMEN

Hypertension can lead to changes in the brain structure and function, and different blood pressure levels (2017ACC/AHA) have different effects on brain structure. It is important to analyze these changes by machine learning methods, and various characteristics can provide rich information for the analysis of these changes. However, multiple feature extraction involves complex data processing. How to make a single feature achieve the same diagnosis effect as multiple features do is worth of study. Kernel ridge regression (KRR) is a kind of machine learning method, which shows faster learning speed and generalization ability in classification tasks. In order to knowledge transfer, we use privileged information (PI) to transfer information of multiple types of feature to single feature. This allows only one feature type to be used during the test stage. In the process of feature fusion, we need to consider all the samples' attribution making the classifier better. In this work, we propose a multi-kernel KRR+ framework based on self-paced learning to analyze the changes of the brain structure in patients with different blood pressure levels. Specifically, one kind of a feature is taken as main feature, and other features are input into the multi-kernel KRR as PI. These two inputs are fed into the final KRR classifier together. In addition, a self-paced learning method is introduced into sample selecting to avoid training the classifier using samples with a large loss value firstly, which improves the generalization performance of the classifier. Experimental results show that the proposed method can make full use of the information of various features and achieve better classification performance. This shows self-paced learning based KRR can help analyze brain structure of patients with different blood pressure levels. The discriminative features may help clinicians to make judgments of hypertension degrees on brain MRI images.


Asunto(s)
Hipertensión , Imagen por Resonancia Magnética , Algoritmos , Encéfalo/diagnóstico por imagen , Humanos , Hipertensión/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos
2.
Biomed Eng Online ; 22(1): 91, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37726780

RESUMEN

Deformable multimodal image registration plays a key role in medical image analysis. It remains a challenge to find accurate dense correspondences between multimodal images due to the significant intensity distortion and the large deformation. macJNet is proposed to align the multimodal medical images, which is a weakly-supervised multimodal image deformable registration method using a joint learning framework and multi-sampling cascaded modality independent neighborhood descriptor (macMIND). The joint learning framework consists of a multimodal image registration network and two segmentation networks. The proposed macMIND is a modality-independent image structure descriptor to provide dense correspondence for registration, which incorporates multi-orientation and multi-scale sampling patterns to build self-similarity context. It greatly enhances the representation ability of cross-modal features in the registration network. The semi-supervised segmentation networks generate anatomical labels to provide semantics correspondence for registration, and the registration network helps to improve the performance of multimodal image segmentation by providing the consistency of anatomical labels. 3D CT-MR liver image dataset with 118 samples is built for evaluation, and comprehensive experiments have been conducted to demonstrate that macJNet achieves superior performance over state-of-the-art multi-modality medical image registration methods.


Asunto(s)
Aprendizaje , Semántica , Tomografía Computarizada por Rayos X
3.
Biomed Eng Online ; 21(1): 71, 2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36163014

RESUMEN

BACKGROUND: Accurate segmentation of unruptured cerebral aneurysms (UCAs) is essential to treatment planning and rupture risk assessment. Currently, three-dimensional time-of-flight magnetic resonance angiography (3D TOF-MRA) has been the most commonly used method for screening aneurysms due to its noninvasiveness. The methods based on deep learning technologies can assist radiologists in achieving accurate and reliable analysis of the size and shape of aneurysms, which may be helpful in rupture risk prediction models. However, the existing methods did not accomplish accurate segmentation of cerebral aneurysms in 3D TOF-MRA. METHODS: This paper proposed a CCDU-Net for segmenting UCAs of 3D TOF-MRA images. The CCDU-Net was a cascade of a convolutional neural network for coarse segmentation and the proposed DU-Net for fine segmentation. Especially, the dual-channel inputs of DU-Net were composed of the vessel image and its contour image which can augment the vascular morphological information. Furthermore, a newly designed weighted loss function was used in the training process of DU-Net to promote the segmentation performance. RESULTS: A total of 270 patients with UCAs were enrolled in this study. The images were divided into the training (N = 174), validation (N = 43), and testing (N = 53) cohorts. The CCDU-Net achieved a dice similarity coefficient (DSC) of 0.616 ± 0.167, Hausdorff distance (HD) of 5.686 ± 7.020 mm, and volumetric similarity (VS) of 0.752 ± 0.226 in the testing cohort. Compared with the existing best method, the DSC and VS increased by 18% and 5%, respectively, while the HD decreased by one-tenth. CONCLUSIONS: We proposed a CCDU-Net for segmenting UCAs in 3D TOF-MRA, and the obtained results show that the proposed method outperformed other existing methods.


Asunto(s)
Aprendizaje Profundo , Aneurisma Intracraneal , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Aneurisma Intracraneal/diagnóstico por imagen , Aneurisma Intracraneal/patología , Angiografía por Resonancia Magnética/métodos , Redes Neurales de la Computación
4.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 39(6): 1065-1073, 2022 Dec 25.
Artículo en Zh | MEDLINE | ID: mdl-36575074

RESUMEN

The effective classification of multi-task motor imagery electroencephalogram (EEG) is helpful to achieve accurate multi-dimensional human-computer interaction, and the high frequency domain specificity between subjects can improve the classification accuracy and robustness. Therefore, this paper proposed a multi-task EEG signal classification method based on adaptive time-frequency common spatial pattern (CSP) combined with convolutional neural network (CNN). The characteristics of subjects' personalized rhythm were extracted by adaptive spectrum awareness, and the spatial characteristics were calculated by using the one-versus-rest CSP, and then the composite time-domain characteristics were characterized to construct the spatial-temporal frequency multi-level fusion features. Finally, the CNN was used to perform high-precision and high-robust four-task classification. The algorithm in this paper was verified by the self-test dataset containing 10 subjects (33 ± 3 years old, inexperienced) and the dataset of the 4th 2018 Brain-Computer Interface Competition (BCI competition Ⅳ-2a). The average accuracy of the proposed algorithm for the four-task classification reached 93.96% and 84.04%, respectively. Compared with other advanced algorithms, the average classification accuracy of the proposed algorithm was significantly improved, and the accuracy range error between subjects was significantly reduced in the public dataset. The results show that the proposed algorithm has good performance in multi-task classification, and can effectively improve the classification accuracy and robustness.


Asunto(s)
Interfaces Cerebro-Computador , Imaginación , Humanos , Adulto , Redes Neurales de la Computación , Imágenes en Psicoterapia/métodos , Electroencefalografía/métodos , Algoritmos , Procesamiento de Señales Asistido por Computador
5.
Biomed Eng Online ; 20(1): 20, 2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33579302

RESUMEN

BACKGROUND: Self-esteem is the individual evaluation of oneself. People with high self-esteem grade have mental health and can bravely cope with the threats from the environment. With the development of neuroimaging techniques, researches on cognitive neural mechanisms of self-esteem are increased. Existing methods based on brain morphometry and single-layer brain network cannot characterize the subtle structural differences related to self-esteem. METHOD: To solve this issue, we proposed a multiple anatomical brain network based on multi-resolution region of interest (ROI) template to study the brain structural connections of self-esteem. The multiple anatomical brain network consists of ROI features and hierarchal brain network features that are extracted from structural MRI. For each layer, we calculated the correlation relationship between pairs of ROIs. In order to solve the high-dimensional problem caused by the large amount of network features, feature selection methods (t-test, mRMR, and SVM-RFE) are adopted to reduce the number of features while retaining discriminative information to the maximum extent. Multi-kernel SVM is employed to integrate the various types of features by appropriate weight coefficient. RESULT: The experimental results show that the proposed method can improve classification accuracy to 97.26% compared with single-layer brain network. CONCLUSIONS: The proposed method provides a new perspective for the analysis of brain structural differences of self-esteem, which also has potential guiding significance in other researches involved brain cognitive activity and brain disease diagnosis.


Asunto(s)
Mapeo Encefálico , Encéfalo/anatomía & histología , Red Nerviosa/anatomía & histología , Autoimagen , Estudiantes/psicología , Universidades , Encéfalo/diagnóstico por imagen , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Red Nerviosa/diagnóstico por imagen , Adulto Joven
6.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 38(4): 722-731, 2021 Aug 25.
Artículo en Zh | MEDLINE | ID: mdl-34459173

RESUMEN

The background of abdominal computed tomography (CT) images is complex, and kidney tumors have different shapes, sizes and unclear edges. Consequently, the segmentation methods applying to the whole CT images are often unable to effectively segment the kidney tumors. To solve these problems, this paper proposes a multi-scale network based on cascaded 3D U-Net and DeepLabV3+ for kidney tumor segmentation, which uses atrous convolution feature pyramid to adaptively control receptive field. Through the fusion of high-level and low-level features, the segmented edges of large tumors and the segmentation accuracies of small tumors are effectively improved. A total of 210 CT data published by Kits2019 were used for five-fold cross validation, and 30 CT volume data collected from Suzhou Science and Technology Town Hospital were independently tested by trained segmentation models. The results of five-fold cross validation experiments showed that the Dice coefficient, sensitivity and precision were 0.796 2 ± 0.274 1, 0.824 5 ± 0.276 3, and 0.805 1 ± 0.284 0, respectively. On the external test set, the Dice coefficient, sensitivity and precision were 0.817 2 ± 0.110 0, 0.829 6 ± 0.150 7, and 0.831 8 ± 0.116 8, respectively. The results show a great improvement in the segmentation accuracy compared with other semantic segmentation methods.


Asunto(s)
Neoplasias Renales , Redes Neurales de la Computación , Humanos , Neoplasias Renales/diagnóstico por imagen , Manejo de Especímenes , Tomografía Computarizada por Rayos X
7.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 38(6): 1043-1053, 2021 Dec 25.
Artículo en Zh | MEDLINE | ID: mdl-34970886

RESUMEN

Aiming at the limitations of clinical diagnosis of Parkinson's disease (PD) with rapid eye movement sleep behavior disorder (RBD), in order to improve the accuracy of diagnosis, an intelligent-aided diagnosis method based on few-channel electroencephalogram (EEG) and time-frequency deep network is proposed for PD with RBD. Firstly, in order to improve the speed of the operation and robustness of the algorithm, the 6-channel scalp EEG of each subject were segmented with the same time-window. Secondly, the model of time-frequency deep network was constructed and trained with time-window EEG data to obtain the segmentation-based classification result. Finally, the output of time-frequency deep network was postprocessed to obtain the subject-based diagnosis result. Polysomnography (PSG) of 60 patients, including 30 idiopathic PD and 30 PD with RBD, were collected by Nanjing Brain Hospital Affiliated to Nanjing Medical University and the doctor's detection results of PSG were taken as the gold standard in our study. The accuracy of the segmentation-based classification was 0.902 4 in the validation set. The accuracy of the subject-based classification was 0.933 3 in the test set. Compared with the RBD screening questionnaire (RBDSQ), the novel approach has clinical application value.


Asunto(s)
Enfermedad de Parkinson , Trastorno de la Conducta del Sueño REM , Electroencefalografía , Humanos , Inteligencia , Enfermedad de Parkinson/diagnóstico , Polisomnografía , Trastorno de la Conducta del Sueño REM/diagnóstico
8.
Biomed Eng Online ; 18(1): 124, 2019 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-31881897

RESUMEN

BACKGROUND: Hypertension increases the risk of angiocardiopathy and cognitive disorder. Blood pressure has four categories: normal, elevated, hypertension stage 1 and hypertension stage 2. The quantitative analysis of hypertension helps determine disease status, prognosis assessment, guidance and management, but is not well studied in the framework of machine learning. METHODS: We proposed empirical kernel mapping-based kernel extreme learning machine plus (EKM-KELM+) classifier to discriminate different blood pressure grades in adults from structural brain MR images. ELM+ is the extended version of ELM, which integrates the additional privileged information about training samples in ELM to help train a more effective classifier. In this work, we extracted gray matter volume (GMV), white matter volume, cerebrospinal fluid volume, cortical surface area, cortical thickness from structural brain MR images, and constructed brain network features based on thickness. After feature selection and EKM, the enhanced features are obtained. Then, we select one feature type as the main feature to feed into KELM+, and the rest of the feature types are PI to assist the main feature to train 5 KELM+ classifiers. Finally, the 5 KELM+ classifiers are ensemble to predict classification result in the test stage, while PI is not used during testing. RESULTS: We evaluated the performance of the proposed EKM-KELM+ method using four grades of hypertension data (73 samples for each grade). The experimental results show that the GMV performs observably better than any other feature types with a comparatively higher classification accuracy of 77.37% (Grade 1 vs. Grade 2), 93.19% (Grade 1 vs. Grade 3), and 95.15% (Grade 1 vs. Grade 4). The most discriminative brain regions found using our method are olfactory, orbitofrontal cortex (inferior), supplementary motor area, etc. CONCLUSIONS: Using region of interest features and brain network features, EKM-KELM+ is proposed to study the most discriminative regions that have obvious structural changes in different blood pressure grades. The discriminative features that are selected using our method are consistent with the existing neuroimaging studies. Moreover, our study provides a potential approach to take effective interventions in the early period, when the blood pressure makes minor impacts on the brain structure and function.


Asunto(s)
Presión Sanguínea , Encéfalo/patología , Encéfalo/fisiopatología , Procesamiento de Imagen Asistido por Computador/métodos , Aprendizaje Automático , Adulto , Encéfalo/diagnóstico por imagen , Humanos , Hipertensión/diagnóstico por imagen , Hipertensión/patología , Hipertensión/fisiopatología , Imagen por Resonancia Magnética
9.
Biomed Eng Online ; 17(1): 20, 2018 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-29415726

RESUMEN

Pulmonary nodule is one of the important lesions of lung cancer, mainly divided into two categories of solid nodules and ground glass nodules. The improvement of diagnosis of lung cancer has significant clinical significance, which could be realized by machine learning techniques. At present, there have been a lot of researches focusing on solid nodules. But the research on ground glass nodules started late, and lacked research results. This paper summarizes the research progress of the method of intelligent diagnosis for pulmonary nodules since 2014. It is described in details from four aspects: nodular signs, data analysis methods, prediction models and system evaluation. This paper aims to provide the research material for researchers of the clinical diagnosis and intelligent analysis of lung cancer, and further improve the precision of pulmonary ground glass nodule diagnosis.


Asunto(s)
Neoplasias Pulmonares/diagnóstico , Nódulo Pulmonar Solitario/diagnóstico , Humanos , Procesamiento de Imagen Asistido por Computador , Tomografía Computarizada por Rayos X
10.
Biomed Eng Online ; 17(1): 77, 2018 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-29903023

RESUMEN

BACKGROUND: In diffusion-weighted magnetic resonance imaging (DWI) using single-shot echo planar imaging (ss-EPI), both reduced field-of-view (FOV) excitation and sensitivity encoding (SENSE) alone can increase in-plane resolution to some degree. However, when the two techniques are combined to further increase resolution without pronounced geometric distortion, the resulted images are often corrupted by high level of noise and artifact due to the numerical restriction in SENSE. Hence, this study is aimed to provide a reconstruction method to deal with this problem. METHODS: The proposed reconstruction method was developed and implemented to deal with the high level of noise and artifact in the combination of reduced FOV imaging and traditional SENSE, in which all the imaging data were considered jointly by incorporating the motion induced phase variations among excitations. The in vivo human spine diffusion images from ten subjects were acquired at 1.5 T and reconstructed using the proposed method, and compared with SENSE magnitude average results for a range of reduction factors in reduced FOV. These images were evaluated by two radiologists using visual scores (considering distortion, noise and artifact levels) from 1 to 10. RESULTS: The proposed method was able to reconstruct images with greatly reduced noise and artifact compared to SENSE magnitude average. The mean g-factors were maintained close to 1 along with enhanced signal-to-noise ratio efficiency. The image quality scores of the proposed method were significantly higher (P < 0.01) than SENSE magnitude average for all the evaluated reduction factors. CONCLUSION: The proposed method can improve the combination of SENSE and reduced FOV for high-resolution ss-EPI DWI with reduced noise and artifact.


Asunto(s)
Imagen de Difusión por Resonancia Magnética/métodos , Imagen Eco-Planar , Relación Señal-Ruido , Artefactos , Vértebras Cervicales/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador , Médula Espinal/diagnóstico por imagen
11.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 35(6): 928-934, 2018 12 25.
Artículo en Zh | MEDLINE | ID: mdl-30583319

RESUMEN

Feature representation is the crucial factor for the magnetic resonance imaging (MRI) based computer-aided diagnosis (CAD) of Parkinson's disease (PD). Deep polynomial network (DPN) is a novel supervised deep learning algorithm, which has excellent feature representation for small dataset. In this work, a stacked DPN (SDPN) based ensemble learning framework is proposed for diagnosis of PD, which can improve diagnostic accuracy for small dataset. In the proposed framework, SDPN was performed on each subset of extracted features from MRI images to generate new feature representation. The support vector machine (SVM) was then adopted to perform classification task on each subset. The ensemble learning algorithm was then performed on all the SVM classifiers to generate the final diagnosis for PD. The experimental results on the Parkinson's Progression Markers Initiative dataset (PPMI) showed that the proposed algorithm achieved the classification accuracy, sensitivity and specificity of 90.15%, 85.48% and 93.27%, respectively, with the brain network features, and it also got the classification accuracy of 87.18%, sensitivity of 86.90% and specificity of 87.27% on the multi-view features extracted from different brain regions. Moreover, the proposed algorithm outperformed other algorithms on the MRI dataset from PPMI. It suggests that the proposed SDPN-based ensemble learning framework has the feasibility and effectiveness for the CAD of PD.

12.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 35(3): 329-336, 2018 06 25.
Artículo en Zh | MEDLINE | ID: mdl-29938938

RESUMEN

Seizures during sleep increase the probability of complication and sudden death. Effective prediction of seizures in sleep allows doctors and patients to take timely treatments to reduce the aforementioned probability. Most of the existing methods make use of electroencephalogram (EEG) to predict seizures, which are not specific developed for the sleep. However, EEG during sleep has its characteristics compared with EEG during other states. Therefore, in order to improve the sensitivity and reduce the false alarm rate, this paper utilized the characteristics of EEG to predict seizures during sleep. We firstly constructed the feature vector including the absolute power spectrum, the relative power spectrum and the power spectrum ratio in different frequencies. Secondly, the separation criterion and branch-and-bound method were applied to select features. Finally, support vector machine classifier were trained, which is then employed for online prediction. Compared with the existing method that do not consider the characteristics of sleeping EEG (sensitivity 91.67%, false alarm rate 9.19%), the proposed method was superior in terms of sensitivity (100%) and false alarm rate (2.11%). This method can improve the existing epilepsy prediction methods and has important clinical value.


Asunto(s)
Epilepsia , Convulsiones , Algoritmos , Electroencefalografía , Epilepsia/complicaciones , Epilepsia/diagnóstico , Humanos , Convulsiones/diagnóstico , Sueño , Máquina de Vectores de Soporte
13.
Biomed Eng Online ; 16(1): 8, 2017 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-28086888

RESUMEN

BACKGROUND: To improve the accuracy of ultrasound-guided biopsy of the prostate, the non-rigid registration of magnetic resonance (MR) images onto transrectal ultrasound (TRUS) images has gained increasing attention. Mutual information (MI) is a widely used similarity criterion in MR-TRUS image registration. However, the use of MI has been challenged because of intensity distortion, noise and down-sampling. Hence, we need to improve the MI measure to get better registration effect. METHODS: We present a novel two-dimensional non-rigid MR-TRUS registration algorithm that uses correlation ratio-based mutual information (CRMI) as the similarity criterion. CRMI includes a functional mapping of intensity values on the basis of a generalized version of intensity class correspondence. We also analytically acquire the derivative of CRMI with respect to deformation parameters. Furthermore, we propose an improved stochastic gradient descent (ISGD) optimization method based on the Metropolis acceptance criteria to improve the global optimization ability and decrease the registration time. RESULTS: The performance of the proposed method is tested on synthetic images and 12 pairs of clinical prostate TRUS and MR images. By comparing label map registration frame (LMRF) and conditional mutual information (CMI), the proposed algorithm has a significant improvement in the average values of Hausdorff distance and target registration error. Although the average Dice Similarity coefficient is not significantly better than CMI, it still has a crucial increase over LMRF. The average computation time consumed by the proposed method is similar to LMRF, which is 16 times less than CMI. CONCLUSION: With more accurate matching performance and lower sensitivity to noise and down-sampling, the proposed algorithm of minimizing CRMI by ISGD is more robust and has the potential for use in aligning TRUS and MR images for needle biopsy.


Asunto(s)
Biopsia/métodos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Próstata/diagnóstico por imagen , Próstata/patología , Recto , Cirugía Asistida por Computador/métodos , Humanos , Masculino , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Ultrasonografía
14.
Front Neurosci ; 18: 1356241, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38694903

RESUMEN

Introduction: Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition characterized by impairments in motor skills, communication, emotional expression, and social interaction. Accurate diagnosis of ASD remains challenging due to the reliance on subjective behavioral observations and assessment scales, lacking objective diagnostic indicators. Methods: In this study, we introduced a novel approach for diagnosing ASD, leveraging T1-based gray matter and ASL-based cerebral blood flow network metrics. Thirty preschool-aged patients with ASD and twenty-two typically developing (TD) individuals were enrolled. Brain network features, including gray matter and cerebral blood flow metrics, were extracted from both T1-weighted magnetic resonance imaging (MRI) and ASL images. Feature selection was performed using statistical t-tests and Minimum Redundancy Maximum Relevance (mRMR). A machine learning model based on random vector functional link network was constructed for diagnosis. Results: The proposed approach demonstrated a classification accuracy of 84.91% in distinguishing ASD from TD. Key discriminating network features were identified in the inferior frontal gyrus and superior occipital gyrus, regions critical for social and executive functions in ASD patients. Discussion: Our study presents an objective and effective approach to the clinical diagnosis of ASD, overcoming the limitations of subjective behavioral observations. The identified brain network features provide insights into the neurobiological mechanisms underlying ASD, potentially leading to more targeted interventions.

15.
Bioengineering (Basel) ; 11(5)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38790294

RESUMEN

Brain tissue segmentation plays a critical role in the diagnosis, treatment, and study of brain diseases. Accurately identifying these boundaries is essential for improving segmentation accuracy. However, distinguishing boundaries between different brain tissues can be challenging, as they often overlap. Existing deep learning methods primarily calculate the overall segmentation results without adequately addressing local regions, leading to error propagation and mis-segmentation along boundaries. In this study, we propose a novel mis-segmentation-focused loss function based on a two-stage nnU-Net framework. Our approach aims to enhance the model's ability to handle ambiguous boundaries and overlapping anatomical structures, thereby achieving more accurate brain tissue segmentation results. Specifically, the first stage targets the identification of mis-segmentation regions using a global loss function, while the second stage involves defining a mis-segmentation loss function to adaptively adjust the model, thus improving its capability to handle ambiguous boundaries and overlapping anatomical structures. Experimental evaluations on two datasets demonstrate that our proposed method outperforms existing approaches both quantitatively and qualitatively.

16.
Med Biol Eng Comput ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38658497

RESUMEN

The assessment of deformable registration uncertainty is an important task for the safety and reliability of registration methods in clinical applications. However, it is typically done by a manual and time-consuming procedure. We propose a novel automatic method to predict registration uncertainty based on multi-category features and supervised learning. Three types of features, including deformation field statistical features, deformation field physiologically realistic features, and image similarity features, are introduced and calculated to train the random forest regressor for local registration uncertain prediction. Deformation field statistical features represent the numerical stability of registration optimization, which are correlated to the uncertainty of deformation fields; deformation field physiologically realistic features represent the biomechanical properties of organ motions, which mathematically reflect the physiological reality of deformation; image similarity features reflect the similarity between the warped image and fixed image. The multi-category features comprehensively reflect the registration uncertainty. The strategy of spatial adaptive random perturbations is also introduced to accurately simulate spatial distribution of registration uncertainty, which makes deformation field statistical features more discriminative to the uncertainty of deformation fields. Experiments were conducted on three publicly available thoracic CT image datasets. Seventeen randomly selected image pairs are used to train the random forest model, and 9 image pairs are used to evaluate the prediction model. The quantitative experiments on lung CT images show that the proposed method outperforms the baseline method for uncertain prediction of classical iterative optimization-based registration and deep learning-based registration with different registration qualities. The proposed method achieves good performance for registration uncertain prediction, which has great potential in improving the accuracy of registration uncertain prediction.

17.
Sci Rep ; 14(1): 13683, 2024 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-38871755

RESUMEN

Prediction of glioma is crucial to provide a precise treatment plan to optimize the prognosis of children with glioma. However, studies on the grading of pediatric gliomas using radiomics are limited. Meanwhile, existing methods are mainly based on only radiomics features, ignoring intuitive information about tumor morphology on traditional imaging features. This study aims to utilize multiparametric magnetic resonance imaging (MRI) to identify high-grade and low-grade gliomas in children and establish a classification model based on radiomics features and clinical features. A total of 85 children with gliomas underwent tumor resection, and part of the tumor tissue was examined pathologically. Patients were categorized into high-grade and low-grade groups according to World Health Organization guidelines. Preoperative multiparametric MRI data, including contrast-enhanced T1-weighted imaging, T2-weighted imaging, T2-weighted fluid-attenuated inversion recovery, diffusion-weighted images, and apparent diffusion coefficient sequences, were obtained and labeled by two radiologists. The images were preprocessed, and radiomics features were extracted for each MRI sequence. Feature selection methods were used to select radiomics features, and statistically significant clinical features were identified using t-tests. The selected radiomics features and conventional MRI features were used to train the AutoGluon models. The improved model, based on radiomics features and conventional MRI features, achieved a balanced classification accuracy of 66.59%. The cross-validated areas under the receiver operating characteristic curve for the classifier of AutoGluon frame were 0.8071 on the test dataset. The results indicate that the performance of AutoGluon models can be improved by incorporating conventional MRI features, highlighting the importance of the experience of radiologists in accurately grading pediatric gliomas. This method can help predict the grade of pediatric glioma before pathological examination and assist in determining the appropriate treatment plan, including radiotherapy, chemotherapy, drugs, and gene surgery.


Asunto(s)
Neoplasias Encefálicas , Glioma , Imagen por Resonancia Magnética , Clasificación del Tumor , Humanos , Glioma/diagnóstico por imagen , Glioma/patología , Niño , Femenino , Masculino , Preescolar , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Adolescente , Imagen por Resonancia Magnética/métodos , Imágenes de Resonancia Magnética Multiparamétrica/métodos , Lactante , Curva ROC , Radiómica
18.
Front Neurol ; 15: 1323623, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38356879

RESUMEN

Objective: Temporal lobe epilepsy (TLE) predominantly originates from the anteromedial basal region of the temporal lobe, and its prognosis is generally favorable following surgical intervention. However, TLE often appears negative in magnetic resonance imaging (MRI), making it difficult to quantitatively diagnose the condition solely based on clinical symptoms. There is a pressing need for a quantitative, automated method for detecting TLE. Methods: This study employed MRI scans and clinical data from 51 retrospective epilepsy cases, dividing them into two groups: 34 patients in TLE group and 17 patients in non-TLE group. The criteria for defining the TLE group were successful surgical removal of the epileptogenic zone in the temporal lobe and a favorable postoperative prognosis. A standard procedure was used for normalization, brain extraction, tissue segmentation, regional brain partitioning, and cortical reconstruction of T1 structural MRI images. Morphometric features such as gray matter volume, cortical thickness, and surface area were extracted from a total of 20 temporal lobe regions in both hemispheres. Support vector machine (SVM), extreme learning machine (ELM), and cmcRVFL+ classifiers were employed for model training and validated using 10-fold cross-validation. Results: The results demonstrated that employing ELM classifiers in conjunction with specific temporal lobe gray matter volume features led to a better identification of TLE. The classification accuracy was 92.79%, with an area under the curve (AUC) value of 0.8019. Conclusion: The method proposed in this study can significantly assist in the preoperative identification of TLE patients. By employing this method, TLE can be included in surgical criteria, which could alleviate patient symptoms and improve prognosis, thereby bearing substantial clinical significance.

19.
IEEE Trans Biomed Eng ; PP2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38354081

RESUMEN

OBJECTIVE: This study aims to develop a more realistic electrode model by incorporating the non-uniform distribution of electrode contact conductance (ECC) and the shunting effects, to accurately solve EEG forward problem (FP). METHODS: Firstly, a hat function is introduced to construct a more realistic hat-shaped distribution (HD) for ECC. Secondly, this hat function is modified by applying two parameters - offset ratio and offset direction - to account for the variability in ECC's center and to develop the flexible-center HD (FCHD). Finally, by integrating this FCHD into the complete electrode model (CEM) with the shunting effects, a novel flexible-center hat complete electrode model (FCH-CEM) is proposed and used to solve FP. RESULTS: Simulation experiments using a realistic head model demonstrate the necessity of FCHCEM and its potential to improve the accuracy of the FP solution compared to current models, i.e., the point electrode model (PEM) and CEM. And compared to PEM, it has better performance under coarse mesh conditions (2 mm). Further experiments indicate the significance of considering shunting effects, as ignoring them results in larger errors than coarse mesh when the average contact conductance is large (). CONCLUSION: The proposed FCH-CEM has better accuracy and performance than PEM and complements CEM in finer meshes, making it necessary for coarse meshes. SIGNIFICANCE: This study proposes a novel model that enhances electrode modeling and FP accuracy, and provides new ideas and methods for future research.

20.
Magn Reson Imaging ; 109: 158-164, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38520943

RESUMEN

INTRODUCTION: Idiopathic rapid eye movement sleep behavior disorder (iRBD) and Parkinson's disease (PD) have been found to have changes in cerebral perfusion and overlap of some of the lesioned brain areas. However, a consensus regarding the specific location and diagnostic significance of these cerebral blood perfusion alternations remains elusive in both iRBD and PD. The present study evaluated the patterns of cerebral blood flow changes in iRBD and PD. MATERIAL AND METHODS: A total of 59 right-handed subjects were enrolled, including 15 patients with iRBD, 20 patients with PD, and 24 healthy controls (HC). They were randomly divided into groups at a ratio of 4 to 1 for training and testing. A PASL sequence was employed to obtain quantitative cerebral blood flow (CBF) maps. The CBF values were calculated from these acquired maps. In addition, AutoGluon was employed to construct a classifier for CBF features selection and classification. An independent t-test was performed for CBF variations, with age and sex as nuisance variables. The performance of the feature was evaluated using receiver operating characteristic (ROC) curves. A significance level of P < 0.05 was considered significant. CBF in several brain regions, including the left median cingulate and paracingulate gyri and the right middle occipital gyrus (MOG), showed significant differences between PD and HC, demonstrating good classification performance. The combined model that integrates all features achieved even higher performance with an AUC of 0.9380. Additionally, CBF values in multiple brain regions, including the right MOG and the left angular gyrus, displayed significant differences between PD and iRBD. Particularly, CBF values in the left angular gyrus exhibited good performance in classifying PD and iRBD. The combined model achieved improved performance, with an AUC of 0.8533. No significant differences were found in brain regions when comparing CBF values between iRBD and HC subjects. CONCLUSIONS: ASL-based quantitative CBF change features can offer reliable biomarkers to assist in the diagnosis of PD. Regarding the characteristic of CBF in the right MOG, it is anticipated to serve as an imaging biomarker for predicting the progression of iRBD to PD.


Asunto(s)
Enfermedad de Parkinson , Trastorno de la Conducta del Sueño REM , Humanos , Trastorno de la Conducta del Sueño REM/diagnóstico por imagen , Enfermedad de Parkinson/diagnóstico por imagen , Marcadores de Spin , Circulación Cerebrovascular , Arterias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA