Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Environ Sci Technol ; 54(17): 10797-10807, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32786588

RESUMEN

Achievement of the 1.5 °C limit for global temperature increase relies on the large-scale deployment of carbon dioxide removal (CDR) technologies. In this article, we explore two CDR technologies: soil carbon sequestration (SCS), and carbon capture and storage (CCS) integrated with cellulosic biofuel production. These CDR technologies are applied as part of decentralized biorefinery systems processing corn stover and unfertilized switchgrass grown in riparian zones in the Midwestern United States. Cover crops grown on corn-producing lands are chosen from the SCS approach, and biogenic CO2 in biorefineries is captured, transported by pipeline, and injected into saline aquifers. The decentralized biorefinery system using SCS, CCS, or both can produce carbon-negative cellulosic biofuels (≤-22.2 gCO2 MJ-1). Meanwhile, biofuel selling prices increase by 15-45% due to CDR costs. Economic incentives (e.g., cover crop incentives and/or a CO2 tax credit) can mitigate price increases caused by CDR technologies. A combination of different CDR technologies in decentralized biorefinery systems is the most efficient method for greenhouse gas (GHG) mitigation, and its total GHG mitigation potential in the Midwest is 0.16 GtCO2 year-1.


Asunto(s)
Biocombustibles , Gases de Efecto Invernadero , Agricultura , Productos Agrícolas , Efecto Invernadero , Medio Oeste de Estados Unidos
2.
Environ Sci Technol ; 53(5): 2288-2294, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30730719

RESUMEN

The Renewable Fuel Standard (RFS) program specifies a greenhouse gas (GHG) reduction threshold for cellulosic biofuels, while the Low Carbon Fuel Standard (LCFS) program in California does not. Here, we investigate the effects of the GHG threshold under the RFS on projected GHG savings from two corn stover-based biofuel supply chain systems in the United States Midwest. The analysis is based on a techno-economic framework that minimizes ethanol selling price. The GHG threshold lowers the lifecycle GHG of ethanol: 34.39 ± 4.92 gCO2 MJ-1 in the RFS-compliant system and 46.30 ± 10.05 gCO2 MJ-1 in the non RFS-compliant system. However, hypothetical biorefinery systems complying with the RFS will not process the more GHG-intensive corn stover, and thus much less biofuel will be produced compared to the non RFS-compliant system. Thus, taken as a whole, the non RFS-compliant system would achieve more GHG savings than an RFS-compliant system: 10.7 TgCO2 year-1 in the non RFS-compliant system compared with 4.4 TgCO2 year-1 in the RFS-compliant system. These results suggest that the current RFS GHG reduction threshold may not be the most efficient way to carry out the purposes of the Energy Security and Independence Act in the corn stover-based biofuel system: relaxing the threshold could actually increase the overall GHG savings from corn stover-based biofuels. Therefore, the LCFS-type regulatory approach is recommended for the corn stover-based cellulosic biofuel system under the RFS program. In addition, our calculation of the GHG balance for stover-based biofuel accounts for SOC losses, while the current RFS estimates do not include effects on SOC.


Asunto(s)
Biocombustibles , Gases de Efecto Invernadero , California , Efecto Invernadero , Estados Unidos , Zea mays
3.
Biotechnol Bioeng ; 114(8): 1713-1720, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28369757

RESUMEN

High enzyme loading and low productivity are two major issues impeding low cost ethanol production from lignocellulosic biomass. This work applied rapid bioconversion with integrated recycle technology (RaBIT) and extractive ammonia (EA) pretreatment for conversion of corn stover (CS) to ethanol at high solids loading. Enzymes were recycled via recycling unhydrolyzed solids. Enzymatic hydrolysis with recycled enzymes and fermentation with recycled yeast cells were studied. Both enzymatic hydrolysis time and fermentation time were shortened to 24 h. Ethanol productivity was enhanced by two times and enzyme loading was reduced by 30%. Glucan and xylan conversions reached as high as 98% with an enzyme loading of as low as 8.4 mg protein per g glucan. The overall ethanol yield was 227 g ethanol/kg EA-CS (191 g ethanol/kg untreated CS). Biotechnol. Bioeng. 2017;114: 1713-1720. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Amoníaco/química , Celulasa/química , Etanol/aislamiento & purificación , Etanol/metabolismo , Componentes Aéreos de las Plantas/microbiología , Saccharomyces cerevisiae/metabolismo , Zea mays/microbiología , Reactores Biológicos/microbiología , Hidrólisis , Lignina/química , Lignina/metabolismo , Extracción Líquido-Líquido/métodos , Componentes Aéreos de las Plantas/química , Reciclaje/métodos , Integración de Sistemas , Zea mays/química
4.
Biotechnol Bioeng ; 114(5): 980-989, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27888662

RESUMEN

High solids loadings (>18 wt%) in enzymatic hydrolysis and fermentation are desired for lignocellulosic biofuel production at a high titer and low cost. However, sugar conversion and ethanol yield decrease with increasing solids loading. The factor(s) limiting sugar conversion at high solids loading is not clearly understood. In the present study, we investigated the effect of solids loading on simultaneous saccharification and co-fermentation (SSCF) of AFEX™ (ammonia fiber expansion) pretreated corn stover for ethanol production using a xylose fermenting strain Saccharomyces cerevisiae 424A(LNH-ST). Decreased sugar conversion and ethanol yield with increasing solids loading were also observed. End-product (ethanol) was proven to be the major cause of this issue and increased degradation products with increasing solids loading was also a cause. For the first time, we show that with in situ removal of end-product by performing SSCF aerobically, sugar conversion stopped decreasing with increasing solids loading and monomeric sugar conversion reached as high as 93% at a high solids loading of 24.9 wt%. Techno-economic analysis was employed to explore the economic possibilities of cellulosic ethanol production at high solids loadings. The results suggest that low-cost in situ removal of ethanol during SSCF would significantly improve the economics of high solids loading processes. Biotechnol. Bioeng. 2017;114: 980-989. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Biocombustibles , Reactores Biológicos , Etanol/metabolismo , Lignina/metabolismo , Amoníaco/metabolismo , Biocombustibles/análisis , Biocombustibles/economía , Reactores Biológicos/economía , Reactores Biológicos/microbiología , Etanol/análisis , Fermentación , Glucosa/metabolismo , Hidrólisis , Saccharomyces cerevisiae/metabolismo , Xilosa/metabolismo , Zea mays/química
5.
Faraday Discuss ; 202: 11-30, 2017 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-28726911

RESUMEN

A sustainable chemical industry cannot exist at scale without both sustainable feedstocks and feedstock supply chains to provide the raw materials. However, most current research focus is on producing the sustainable chemicals and materials. Little attention is given to how and by whom sustainable feedstocks will be supplied. In effect, we have put the bioproducts cart before the sustainable feedstocks horse. For example, bulky, unstable, non-commodity feedstocks such as crop residues probably cannot supply a large-scale sustainable industry. Likewise, those who manage land to produce feedstocks must benefit significantly from feedstock production, otherwise they will not participate in this industry and it will never grow. However, given real markets that properly reward farmers, demand for sustainable bioproducts and bioenergy can drive the adoption of more sustainable agricultural and forestry practices, providing many societal "win-win" opportunities. Three case studies are presented to show how this "win-win" process might unfold.


Asunto(s)
Industria Química , Productos Agrícolas/química , Etanol/síntesis química , Animales , Biomasa , Etanol/química , Caballos , Humanos
6.
J Ind Microbiol Biotechnol ; 44(9): 1261-1272, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28536841

RESUMEN

The Rapid Bioconversion with Integrated recycling Technology (RaBIT) process uses enzyme and yeast recycling to improve cellulosic ethanol production economics. The previous versions of the RaBIT process exhibited decreased xylose consumption using cell recycle for a variety of different micro-organisms. Process changes were tested in an attempt to eliminate the xylose consumption decrease. Three different RaBIT process changes were evaluated in this work including (1) shortening the fermentation time, (2) fed-batch hydrolysate addition, and (3) selective cell recycling using a settling method. Shorting the RaBIT fermentation process to 11 h and introducing fed-batch hydrolysate addition eliminated any xylose consumption decrease over ten fermentation cycles; otherwise, decreased xylose consumption was apparent by the third cell recycle event. However, partial removal of yeast cells during recycle was not economical when compared to recycling all yeast cells.


Asunto(s)
Técnicas de Cultivo Celular por Lotes , Separación Celular , Etanol/metabolismo , Fermentación , Lignina/metabolismo , Saccharomyces cerevisiae/metabolismo , Zea mays/metabolismo , Biomasa , Recuento de Células , Etanol/economía , Etanol/provisión & distribución , Xilosa/metabolismo
7.
Biotechnol Bioeng ; 113(8): 1676-90, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26724417

RESUMEN

Oleaginous yeasts can convert sugars to lipids with fatty acid profiles similar to those of vegetable oils, making them attractive for production of biodiesel. Lignocellulosic biomass is an attractive source of sugars for yeast lipid production because it is abundant, potentially low cost, and renewable. However, lignocellulosic hydrolyzates are laden with byproducts which inhibit microbial growth and metabolism. With the goal of identifying oleaginous yeast strains able to convert plant biomass to lipids, we screened 32 strains from the ARS Culture Collection, Peoria, IL to identify four robust strains able to produce high lipid concentrations from both acid and base-pretreated biomass. The screening was arranged in two tiers using undetoxified enzyme hydrolyzates of ammonia fiber expansion (AFEX)-pretreated cornstover as the primary screening medium and acid-pretreated switch grass as the secondary screening medium applied to strains passing the primary screen. Hydrolyzates were prepared at ∼18-20% solids loading to provide ∼110 g/L sugars at ∼56:39:5 mass ratio glucose:xylose:arabinose. A two stage process boosting the molar C:N ratio from 60 to well above 400 in undetoxified switchgrass hydrolyzate was optimized with respect to nitrogen source, C:N, and carbon loading. Using this process three strains were able to consume acetic acid and nearly all available sugars to accumulate 50-65% of cell biomass as lipid (w/w), to produce 25-30 g/L lipid at 0.12-0.22 g/L/h and 0.13-0.15 g/g or 39-45% of the theoretical yield at pH 6 and 7, a performance unprecedented in lignocellulosic hydrolyzates. Three of the top strains have not previously been reported for the bioconversion of lignocellulose to lipids. The successful identification and development of top-performing lipid-producing yeast in lignocellulose hydrolyzates is expected to advance the economic feasibility of high quality biodiesel and jet fuels from renewable biomass, expanding the market potential for lignocellulose-derived fuels beyond ethanol for automobiles to the entire U.S. transportation market. Biotechnol. Bioeng. 2016;113: 1676-1690. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Biocombustibles , Biomasa , Lignina/metabolismo , Lípidos/análisis , Levaduras/metabolismo , Metabolismo de los Lípidos/fisiología , Levaduras/fisiología
8.
Proc Natl Acad Sci U S A ; 110(27): 10922-7, 2013 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-23784776

RESUMEN

Substrate binding is typically one of the rate-limiting steps preceding enzyme catalytic action during homogeneous reactions. However, interfacial-based enzyme catalysis on insoluble crystalline substrates, like cellulose, has additional bottlenecks of individual biopolymer chain decrystallization from the substrate interface followed by its processive depolymerization to soluble sugars. This additional decrystallization step has ramifications on the role of enzyme-substrate binding and its relationship to overall catalytic efficiency. We found that altering the crystalline structure of cellulose from its native allomorph I(ß) to III(I) results in 40-50% lower binding partition coefficient for fungal cellulases, but surprisingly, it enhanced hydrolytic activity on the latter allomorph. We developed a comprehensive kinetic model for processive cellulases acting on insoluble substrates to explain this anomalous finding. Our model predicts that a reduction in the effective binding affinity to the substrate coupled with an increase in the decrystallization procession rate of individual cellulose chains from the substrate surface into the enzyme active site can reproduce our anomalous experimental findings.


Asunto(s)
Celulosa/metabolismo , Biocombustibles , Celulasa/metabolismo , Celulosa/química , Proteínas Fúngicas/metabolismo , Hidrólisis , Cinética , Lignina/química , Lignina/metabolismo , Unión Proteica , Especificidad por Sustrato , Trichoderma/enzimología
9.
J Exp Bot ; 66(14): 4279-94, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25911738

RESUMEN

Cell walls, which constitute the bulk of plant biomass, vary considerably in their structure, composition, and architecture. Studies on plant cell walls can be conducted on both native and pre-treated plant biomass samples, allowing an enhanced understanding of these structural and compositional variations. Here glycome profiling was employed to determine the relative abundance of matrix polysaccharides in several phylogenetically distinct native and pre-treated plant biomasses. Eight distinct biomass types belonging to four different subgroups (i.e. monocot grasses, woody dicots, herbaceous dicots, and softwoods) were subjected to various regimes of AFEX™ (ammonia fiber expansion) pre-treatment [AFEX is a trademark of MBI, Lansing (http://www.mbi.org]. This approach allowed detailed analysis of close to 200 cell wall glycan epitopes and their relative extractability using a high-throughput platform. In general, irrespective of the phylogenetic origin, AFEX™ pre-treatment appeared to cause loosening and improved accessibility of various xylan epitope subclasses in most plant biomass materials studied. For most biomass types analysed, such loosening was also evident for other major non-cellulosic components including subclasses of pectin and xyloglucan epitopes. The studies also demonstrate that AFEX™ pre-treatment significantly reduced cell wall recalcitrance among diverse phylogenies (except softwoods) by inducing structural modifications to polysaccharides that were not detectable by conventional gross composition analyses. It was found that monitoring changes in cell wall glycan compositions and their relative extractability for untreated and pre-treated plant biomass can provide an improved understanding of variations in structure and composition of plant cell walls and delineate the role(s) of matrix polysaccharides in cell wall recalcitrance.


Asunto(s)
Biomasa , Carbohidratos/química , Pared Celular/química , Populus
10.
Environ Sci Technol ; 49(14): 8277-86, 2015 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-26086692

RESUMEN

To examine the national fuel and emissions impacts from increasingly electrified light-duty transportation, we reconstructed the vehicle technology portfolios from two national vehicle studies. Using these vehicle portfolios, we normalized assumptions and examined sensitivity around the rates of electrified vehicle penetration, travel demand growth, and electricity decarbonization. We further examined the impact of substituting low-carbon advanced cellulosic biofuels in place of petroleum. Twenty-seven scenarios were benchmarked against a 50% petroleum-reduction target and an 80% GHG-reduction target. We found that with high rates of electrification (40% of miles traveled) the petroleum-reduction benchmark could be satisfied, even with high travel demand growth. The same highly electrified scenarios, however, could not satisfy 80% GHG-reduction targets, even assuming 80% decarbonized electricity and no growth in travel demand. Regardless of precise consumer vehicle preferences, emissions are a function of the total reliance on electricity versus liquid fuels and the corresponding greenhouse gas intensities of both. We found that at a relatively high rate of electrification (40% of miles and 26% by fuel), an 80% GHG reduction could only be achieved with significant quantities of low-carbon liquid fuel in cases with low or moderate travel demand growth.


Asunto(s)
Biocombustibles , Clima , Electricidad , Objetivos , Vehículos a Motor , Petróleo , Gases/análisis , Efecto Invernadero , Transportes , Estados Unidos , Emisiones de Vehículos/análisis
11.
Biotechnol Bioeng ; 111(2): 264-71, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23955838

RESUMEN

Ammonia fiber expansion (AFEX™) pretreatment can be performed at small depots, and the pretreated biomass can then be pelletized and shipped to a centralized refinery. To determine the feasibility of this approach, pelletized AFEX-treated corn stover was hydrolyzed at high (18-36%) solid loadings. Water absorption and retention by the pellets was low compared to unpelletized stover, which allowed enzymatic hydrolysis slurries to remain well mixed without the need for fed-batch addition. Glucose yields of 68% and xylose yields of 65% were obtained with 20 mg enzyme/g glucan and 18% solid loading after 72 h, compared to 61% and 59% for unpelletized corn stover. Pelletization also slightly increased the initial rate of hydrolysis compared to unpelletized biomass. The ease of mixing and high yields obtained suggests that pelletization after AFEX pretreatment could have additional advantages beyond improved logistical handling of biomass.


Asunto(s)
Amoníaco/metabolismo , Celulosa/metabolismo , Glucosa/aislamiento & purificación , Xilosa/aislamiento & purificación , Zea mays/efectos de los fármacos , Zea mays/metabolismo , Biotecnología/métodos , Hidrólisis
12.
Biotechnol Bioeng ; 111(9): 1801-8, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24595802

RESUMEN

Extraction and recovery of protein from abundant plant biomass is one potential way to improve the economic feasibility of biorefineries. However, valorization of the protein fraction is challenging due to its low yield (kg protein extraction/kg biomass). In order to reveal the limiting operation parameters, the alkaline extraction process of protein from Caragana korshinskii Kom. was investigated by an integrative analysis of kinetics and thermodynamics. Both a two-site kinetic extraction model and a second-order model indicated that particle size is the most pivotal factor affecting protein extraction yield. In a two-site model, most proteins are extracted quickly from broken cells, while protein removal from the intact cells takes much longer; these are the faster and slower processes, respectively. A decrease of particle size from 20-40 to 60-80 mesh resulted in a decrease of C2 (protein yield in the slower process) from 14.02 to 7.32 mg g(-1), but a great increase of C1 (protein yield in the faster process) from 20.61 to 59.07 mg g(-1) . However, the protein yield was dominated by the faster process when the average particle size is under 80 mesh. The maximum initial extraction rate was 72.20 mg g(-1) min(-1) with the particle size of 60-80 mesh, almost ninefold of that with 20-40 mesh. Thermodynamic analysis revealed that the enthalpy change (ΔH) and entropy change (ΔS) in the protein extraction process were calculated as 21.08 kJ mol(-1) and 84.76 J K(-1), respectively. The standard free energy (ΔG) had a magnitude from -3.77 to -5.46, suggesting that the extraction process was spontaneous and physically feasible.


Asunto(s)
Álcalis/metabolismo , Caragana/química , Proteínas de Plantas/aislamiento & purificación , Termodinámica , Cinética , Modelos Químicos
13.
Biotechnol Bioeng ; 111(1): 152-64, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24404570

RESUMEN

During lignocellulosic ethanol fermentation, yeasts are exposed to various lignocellulose-derived inhibitors, which disrupt the efficiency of hexose and pentose co-fermentation. To understand the metabolic response of fermentation microbes to these inhibitors, a comparative metabolomic investigation was performed on a xylose-fermenting Saccharomyces cerevisiae 424A (LNH-ST) and its parental strain 4124 with and without three typical inhibitors (furfural, acetic acid, and phenol). Three traits were uncovered according to fermentation results. First, the growth of strain 424A (LNH-ST) was more sensitive to inhibitors than strain 4124. Through metabolomic analysis, the variance of trehalose, cadaverine, glutamate and g-aminobutyric acid (GABA) suggested that strain 424A (LNH-ST) had a lower capability to buffer redox changes caused by inhibitors. Second, lower ethanol yield in glucose and xylose co-fermentation than glucose fermentation was observed in strain 424A (LNH-ST), which was considered to be correlated with the generation of xylitol, as well as the reduced levels of lysine, glutamate, glycine and isoleucine in strain 424A (LNH-ST). Accumulation of glycerol, galactinol and mannitol was also observed in strain 424A (LNH-ST) during xylose fermentation. Third, xylose utilization of strain 424A (LNH-ST) was more significantly disturbed by inhibitors than glucose utilization. Through the analysis of fermentation and metabolomic results, it was suggested that xylose catabolism and energy supply, rather than xylose uptake, were the limiting steps in xylose utilization in the presence of inhibitors.


Asunto(s)
Fermentación/fisiología , Glucosa/metabolismo , Metabolómica/métodos , Saccharomyces cerevisiae/metabolismo , Xilosa/metabolismo , Ácido Acético/farmacología , Aminoácidos/metabolismo , Análisis por Conglomerados , Etanol/metabolismo , Furaldehído/farmacología , Análisis de los Mínimos Cuadrados , Metaboloma/efectos de los fármacos , Fenol/farmacología , Saccharomyces cerevisiae/efectos de los fármacos
14.
Proc Natl Acad Sci U S A ; 108(32): 13212-7, 2011 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-21788494

RESUMEN

Cellulosic biomass is an abundant and underused substrate for biofuel production. The inability of many microbes to metabolize the pentose sugars abundant within hemicellulose creates specific challenges for microbial biofuel production from cellulosic material. Although engineered strains of Saccharomyces cerevisiae can use the pentose xylose, the fermentative capacity pales in comparison with glucose, limiting the economic feasibility of industrial fermentations. To better understand xylose utilization for subsequent microbial engineering, we sequenced the genomes of two xylose-fermenting, beetle-associated fungi, Spathaspora passalidarum and Candida tenuis. To identify genes involved in xylose metabolism, we applied a comparative genomic approach across 14 Ascomycete genomes, mapping phenotypes and genotypes onto the fungal phylogeny, and measured genomic expression across five Hemiascomycete species with different xylose-consumption phenotypes. This approach implicated many genes and processes involved in xylose assimilation. Several of these genes significantly improved xylose utilization when engineered into S. cerevisiae, demonstrating the power of comparative methods in rapidly identifying genes for biomass conversion while reflecting on fungal ecology.


Asunto(s)
Biocombustibles/microbiología , Fermentación/genética , Hongos/genética , Genómica/métodos , Xilosa/metabolismo , Candida/genética , Secuencia Conservada/genética , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Genes Fúngicos/genética , Genotipo , Fenotipo , Filogenia , Especificidad de la Especie
15.
Biotechnol Bioeng ; 110(5): 1302-11, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23192401

RESUMEN

High productivity processes are critical for commercial production of cellulosic ethanol. One high productivity process-continuous hydrolysis and fermentation-has been applied in corn ethanol industry. However, little research related to this process has been conducted on cellulosic ethanol production. Here, we report and compare the kinetics of both batch SHF (separate hydrolysis and co-fermentation) and SSCF (simultaneous saccharification and co-fermentation) of AFEX™ (Ammonia Fiber Expansion) pretreated corn stover (AFEX™-CS). Subsequently, we designed a SSCF process to evaluate continuous hydrolysis and fermentation performance on AFEX™-CS in a series of continuous stirred tank reactors (CSTRs). Based on similar sugar to ethanol conversions (around 80% glucose-to-ethanol conversion and 47% xylose-to-ethanol conversion), the overall process ethanol productivity for continuous SSCF was 2.3- and 1.8-fold higher than batch SHF and SSCF, respectively. Slow xylose fermentation and high concentrations of xylose oligomers were the major factors limiting further enhancement of productivity.


Asunto(s)
Biotecnología/métodos , Etanol/metabolismo , Saccharomyces cerevisiae/metabolismo , Zea mays/metabolismo , Biocombustibles , Reactores Biológicos , Enzimas/metabolismo , Fermentación , Hidrólisis , Viabilidad Microbiana , Saccharomyces cerevisiae/aislamiento & purificación , Xilosa/metabolismo , Zea mays/química
16.
Analyst ; 138(21): 6683-92, 2013 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-24040649

RESUMEN

Recalcitrance of grasses to enzymatic digestion arises to a significant degree from a complex array of phenolic crosslinks between cell wall polysaccharide chains that inhibit their conversion to biofuels and lower their nutritive value for animal feed applications. Polysaccharide esters of ferulic acid are abundant in plant cell walls. Crosslinks between polysaccharides are formed through oxidative dehydrodimerization of ferulates, producing dehydrodiferulates (henceforth termed diferulates). Such ferulates and diferulates further crosslink plant cell walls by radical coupling cross-reactions during lignification. Although cell wall digestibility can be improved by cell wall metabolic engineering, or post-harvest by various pretreatment processes, a more comprehensive understanding of the role and impact of ferulate crosslinking on polysaccharide hydrolysis would be accelerated by availability of analytical methods that can distinguish the various diferulates released during biomass pretreatments, many of which are isomers. In this report, we present an ultrahigh-performance liquid chromatography/tandem mass spectrometry (UHPLC/MS/MS) strategy for comprehensive separation and identification of diferulate isomers. Collision-induced dissociation (CID) mass spectra of [M + H](+) ions distinguished various isomers without requiring derivatization. Characteristic product ions for 8-O-4-, 8-8-non-cyclic, 8-8-cyclic, 8-5-cyclic, 8-5-non-cyclic, and 5-5-linked isomers were identified. All diferulates were identified either as di-acids in extracts of NaOH-hydrolyzed corn stover, or as a diverse group of diferulate mono- and di-amides in extracts of Ammonia Fiber Expansion (AFEX™)-treated corn stover. This approach allows for direct analysis of released diferulates with minimal sample preparation, and can serve as the foundation for high-throughput profiling and correlating pretreatment conditions with biomass digestibility in biorefineries producing biofuels and biochemicals.


Asunto(s)
Pared Celular/química , Ácidos Cumáricos/análisis , Células Vegetales/química , Espectrometría de Masas en Tándem/métodos , Alimentación Animal/análisis , Cromatografía Líquida de Alta Presión/métodos
17.
Environ Sci Technol ; 47(3): 1695-703, 2013 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-23259686

RESUMEN

This paper compares environmental and profitability outcomes for a centralized biorefinery for cellulosic ethanol that does all processing versus a biorefinery linked to a decentralized array of local depots that pretreat biomass into concentrated briquettes. The analysis uses a spatial bioeconomic model that maximizes profit from crop and energy products, subject to the requirement that the biorefinery must be operated at full capacity. The model draws upon biophysical crop input-output coefficients simulated with the Environmental Policy Integrated Climate (EPIC) model as well as market input and output prices, spatial transportation costs, ethanol yields from biomass, and biorefinery capital and operational costs. The model was applied to 82 cropping systems simulated across 37 subwatersheds in a 9-county region of southern Michigan in response to ethanol prices simulated to rise from $1.78 to $3.36 per gallon. Results show that the decentralized local biomass processing depots lead to lower profitability but better environmental performance, due to more reliance on perennial grasses than the centralized biorefinery. Simulated technological improvement that reduces the processing cost and increases the ethanol yield of switchgrass by 17% could cause a shift to more processing of switchgrass, with increased profitability and environmental benefits.


Asunto(s)
Biocombustibles/análisis , Biomasa , Ambiente , Biocombustibles/economía , Simulación por Computador , Costos y Análisis de Costo , Etanol/metabolismo , Michigan , Modelos Teóricos
18.
Sci Adv ; 9(5): eadd8835, 2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36724227

RESUMEN

The isomerization of xylose to xylulose is considered the most promising approach to initiate xylose bioconversion. Here, phylogeny-guided big data mining, rational modification, and ancestral sequence reconstruction strategies were implemented to explore new active xylose isomerases (XIs) for Saccharomyces cerevisiae. Significantly, 13 new active XIs for S. cerevisiae were mined or artificially created. Moreover, the importance of the amino-terminal fragment for maintaining basic XI activity was demonstrated. With the mined XIs, four efficient xylose-utilizing S. cerevisiae were constructed and evolved, among which the strain S. cerevisiae CRD5HS contributed to ethanol titers as high as 85.95 and 94.76 g/liter from pretreated corn stover and corn cob, respectively, without detoxifying or washing pretreated biomass. Potential genetic targets obtained from adaptive laboratory evolution were further analyzed by sequencing the high-performance strains. The combined XI mining methods described here provide practical references for mining other scarce and valuable enzymes.


Asunto(s)
Saccharomyces cerevisiae , Xilosa , Saccharomyces cerevisiae/genética , Fermentación , Minería de Datos
19.
Biotechnol Bioeng ; 109(8): 1929-36, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22359098

RESUMEN

Consolidated bioprocessing (CBP) using Clostridium phytofermentans (ATCC 700394) on ammonia fiber expansion (AFEX™)-treated corn stover (AFEX™-CS) at a low solids loading showed promising results [Jin et al. (2011) Biotechnol Bioeng 108(6): 1290-1297]. However, industrial relevant process requires high solids loading. Therefore, we studied high solids loading CBP performance on AFEX™-CS. The factors potentially affecting the performance including solids loading, CBP products acetate and ethanol, and degradation products resulting from pretreatment were investigated. At 4% (w/w) glucan loading, C. phytofermentans performed well on AFEX™-CS with no nutrients supplementation and reached similar sugar conversions as a fermentation with nutrients supplementation. A glucan conversion of 48.9% and a xylan conversion of 77.9% were achieved after 264 h with 7.0 g/L ethanol and 8.8 g/L acetate produced. Relatively high concentrations of acetate produced at high solids loading was found to be the major factor limiting the CBP performance. Degradation products in AFEX™-CS helped enhance ethanol production.


Asunto(s)
Biotecnología/métodos , Clostridium/crecimiento & desarrollo , Clostridium/metabolismo , Etanol/metabolismo , Zea mays/metabolismo , Acetatos/metabolismo , Fermentación , Glucanos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA