RESUMEN
Current prophylactic human immunodeficiency virus 1 (HIV-1) vaccine research aims to elicit broadly neutralizing antibodies (bnAbs). Membrane-proximal external region (MPER)-targeting bnAbs, such as 10E8, provide exceptionally broad neutralization, but some are autoreactive. Here, we generated humanized B cell antigen receptor knock-in mouse models to test whether a series of germline-targeting immunogens could drive MPER-specific precursors toward bnAbs. We found that recruitment of 10E8 precursors to germinal centers (GCs) required a minimum affinity for germline-targeting immunogens, but the GC residency of MPER precursors was brief due to displacement by higher-affinity endogenous B cell competitors. Higher-affinity germline-targeting immunogens extended the GC residency of MPER precursors, but robust long-term GC residency and maturation were only observed for MPER-HuGL18, an MPER precursor clonotype able to close the affinity gap with endogenous B cell competitors in the GC. Thus, germline-targeting immunogens could induce MPER-targeting antibodies, and B cell residency in the GC may be regulated by a precursor-competitor affinity gap.
Asunto(s)
Afinidad de Anticuerpos , Linfocitos B , Centro Germinal , Anticuerpos Anti-VIH , VIH-1 , Centro Germinal/inmunología , Animales , Ratones , Humanos , Linfocitos B/inmunología , VIH-1/inmunología , Anticuerpos Anti-VIH/inmunología , Afinidad de Anticuerpos/inmunología , Anticuerpos Neutralizantes/inmunología , Infecciones por VIH/inmunología , Vacunas contra el SIDA/inmunología , Receptores de Antígenos de Linfocitos B/metabolismo , Receptores de Antígenos de Linfocitos B/inmunología , Técnicas de Sustitución del Gen , Ratones Transgénicos , Anticuerpos ampliamente neutralizantes/inmunología , Ratones Endogámicos C57BLRESUMEN
The ability of the humoral immune system to generate Abs capable of specifically binding a myriad of Ags is critically dependent on the somatic hypermutation program. This program induces both templated mutations (i.e., gene conversion) and untemplated mutations. In humans, somatic hypermutation is widely believed to result in untemplated point mutations. In this study, we demonstrate detection of large-scale templated events that occur in human memory B cells and circulating plasmablasts. We find that such mutations are templated intrachromosomally from IGHV genes and interchromosomally from IGHV pseudogenes as well as other homologous regions unrelated to IGHV genes. These same donor regions are used in multiple individuals, and they predominantly originate from chromosomes 14, 15, and 16. In addition, we find that exogenous sequences placed at the IgH locus, such as LAIR1, undergo templated mutagenesis and that homology appears to be the major determinant for donor choice. Furthermore, we find that donor tracts originate from areas in proximity with open chromatin, which are transcriptionally active, and are found in spatial proximity with the IgH locus during the germinal center reaction. These donor sequences are inserted into the Ig gene segment in association with overlapping activation-induced cytidine deaminase hotspots. Taken together, these studies suggest that diversity generated during the germinal center response is driven by untemplated point mutations as well as templated mutagenesis using local and distant regions of the genome.
Asunto(s)
Genes de Inmunoglobulinas , Centro Germinal , Conversión Génica , Genes de Inmunoglobulinas/genética , Humanos , Mutagénesis , MutaciónRESUMEN
Somatic hypermutation generates a myriad of Ab mutants in Ag-specific B cells, from which high-affinity mutants are selected. Chickens, sheep, and rabbits use nontemplated point mutations and templated mutations via gene conversion to diversify their expressed Ig loci, whereas mice and humans rely solely on untemplated somatic point mutations. In this study, we demonstrate that, in addition to untemplated point mutations, templated mutagenesis readily occurs at the murine and human Ig loci. We provide two distinct lines of evidence that are not explained by the Neuberger model of somatic hypermutation: 1) across multiple data sets there is significant linkage disequilibrium between individual mutations, especially among close mutations, and 2) among those mutations, those <8 bp apart are significantly more likely to match microhomologous regions in the IgHV repertoire than predicted by the mutation profiles of somatic hypermutation. Together, this supports the role of templated mutagenesis during somatic diversification of Ag-activated B cells.
Asunto(s)
Ligamiento Genético , Sitios Genéticos , Cadenas Pesadas de Inmunoglobulina/genética , Mutagénesis , Hipermutación Somática de Inmunoglobulina , Animales , ADN Helicasas/fisiología , Proteínas de Unión al ADN/fisiología , Centro Germinal/inmunología , Humanos , Región Variable de Inmunoglobulina/genética , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Mutación , Células Plasmáticas/inmunologíaRESUMEN
Germline-targeting (GT) HIV vaccine strategies are predicated on deriving broadly neutralizing antibodies (bnAbs) through multiple boost immunogens. However, as the recruitment of memory B cells (MBCs) to germinal centers (GCs) is inefficient and may be derailed by serum antibody-induced epitope masking, driving further B cell receptor (BCR) modification in GC-experienced B cells after boosting poses a challenge. Using humanized immunoglobulin knockin mice, we found that GT protein trimer immunogen N332-GT5 could prime inferred-germline precursors to the V3-glycan-targeted bnAb BG18 and that B cells primed by N332-GT5 were effectively boosted by either of two novel protein immunogens designed to have minimum cross-reactivity with the off-target V1-binding responses. The delivery of the prime and boost immunogens as messenger RNA lipid nanoparticles (mRNA-LNPs) generated long-lasting GCs, somatic hypermutation, and affinity maturation and may be an effective tool in HIV vaccine development.
Asunto(s)
Vacunas contra el SIDA , Anticuerpos ampliamente neutralizantes , Centro Germinal , Anticuerpos Anti-VIH , VIH-1 , Inmunización Secundaria , Nanopartículas , Vacunas de ARNm , Animales , Humanos , Ratones , Vacunas contra el SIDA/inmunología , Linfocitos B/inmunología , Anticuerpos ampliamente neutralizantes/inmunología , Reacciones Cruzadas , Técnicas de Sustitución del Gen , Centro Germinal/inmunología , Anticuerpos Anti-VIH/inmunología , Proteína gp120 de Envoltorio del VIH/inmunología , Proteína gp120 de Envoltorio del VIH/química , Proteína gp120 de Envoltorio del VIH/genética , Infecciones por VIH/inmunología , Infecciones por VIH/prevención & control , VIH-1/inmunología , VIH-1/genética , Liposomas , Células B de Memoria/inmunología , Receptores de Antígenos de Linfocitos B/inmunología , Receptores de Antígenos de Linfocitos B/genética , Hipermutación Somática de Inmunoglobulina , Vacunas de ARNm/inmunología , Femenino , Ratones Endogámicos C57BLRESUMEN
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a clear threat to humanity. It has infected over 200 million and killed 4 million people worldwide, and infections continue with no end in sight. To control the pandemic, multiple effective vaccines have been developed, and global vaccinations are in progress. However, the virus continues to mutate. Even when full vaccine coverage is achieved, vaccine-resistant mutants will likely emerge, thus requiring new annual vaccines against drifted variants analogous to influenza. A complimentary solution to this problem could be developing antiviral drugs that inhibit SARS CoV-2 and its drifted variants. Host defense peptides represent a potential source for such an antiviral as they possess broad antimicrobial activity and significant diversity across species. We screened the cathelicidin family of peptides from 16 different species for antiviral activity and identified a wild boar peptide derivative that inhibits SARS CoV-2. This peptide, which we named Yongshi and means warrior in Mandarin, acts as a viral entry inhibitor. Following the binding of SARS-CoV-2 to its receptor, the spike protein is cleaved, and heptad repeats 1 and 2 multimerize to form the fusion complex that enables the virion to enter the cell. A deep learning-based protein sequence comparison algorithm and molecular modeling suggest that Yongshi acts as a mimetic to the heptad repeats of the virus, thereby disrupting the fusion process. Experimental data confirm the binding of Yongshi to the heptad repeat 1 with a fourfold higher affinity than heptad repeat 2 of SARS-CoV-2. Yongshi also binds to the heptad repeat 1 of SARS-CoV-1 and MERS-CoV. Interestingly, it inhibits all drifted variants of SARS CoV-2 that we tested, including the alpha, beta, gamma, delta, kappa and omicron variants.
Asunto(s)
COVID-19 , Catelicidinas , Humanos , SARS-CoV-2 , AntiviralesRESUMEN
BACKGROUND: Members of the mammalian nucleotide binding domain, leucine-rich repeat (LRR)-containing receptor (NLR) family of proteins are key modulators of innate immunity regulating inflammation. Our previous work has shown that among the members of this family, NLRP1/NALP1, present in neurons, plays a crucial role in inflammasome formation and the production of the inflammatory cytokines interleukin (IL) -1ß and IL-18 after various types of central nervous system injury. RESULTS: We investigated whether age-related cognitive decline may involve a heightened inflammatory response associated with activation of the NLRP1 inflammasome in the hippocampus. Young (3 months) and aged (18 months) male Fischer 344 rats were tested in a spatial acquisition task via Morris water maze. Following behavioral testing, hippocampal lysates were assayed for expression of NLRP1 inflammasome components and inflammatory cytokines. Hippocampal lysates from aged rats showed significantly higher levels of NLRP1 inflammasome constituents, caspase-1, caspase-11, the purinergic receptor P2X7, pannexin-1 and X-linked inhibitor of apoptosis (XIAP) than lysates from younger animals. Following treatment with probenecid, an inhibitor or pannexin-1, aged animals demonstrated reduction in inflammasome activation and improvement in spatial learning performance. CONCLUSIONS: Our behavioral findings are consistent with increases in IL-1ß and IL-18 that have been previously shown to correlate with spatial learning deficits. Probenecid reduced activated caspase-1 and ameliorated spatial learning deficits in aged rats. Thus, aging processes stimulate activation of the NLRP1 inflammasome and secretion of IL-1ß and IL-18 that may contribute to age-related cognitive decline in the growing elderly population. Moreover, probenecid may be potentially useful as a therapy to improve cognitive outcomes in the aging population.
Asunto(s)
Envejecimiento/metabolismo , Trastornos del Conocimiento/patología , Inflamasomas/metabolismo , Trastornos de la Memoria/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Envejecimiento/patología , Envejecimiento/psicología , Animales , Citocinas/biosíntesis , Modelos Animales de Enfermedad , Inflamasomas/fisiología , Masculino , Trastornos de la Memoria/patología , Proteínas del Tejido Nervioso/fisiología , Ratas , Ratas Endogámicas F344 , Regulación hacia Arriba/fisiologíaRESUMEN
Evaluation of: Davila ML, Riviere I, Wang X et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci. Transl. Med. 6(224), 224ra25 (2014). Recently, chimeric antigen receptor (CAR) T-cell immunotherapy has entered clinical trials in patients with relapsed or refractory B-cell acute lymphoblastic leukemia. 19-28z CAR T cells express a fusion protein comprised of an anti-CD19 mAb fused with CD28 costimulatory and CD3-zeta-chain signaling domains. The current paper demonstrates that administration of 19-28z CAR T cells in patients with relapsed or refractory B-ALL in a Phase I clinical trial has led to 88% of patients undergoing complete remission. Despite the benefits, CAR T-cell therapy is associated with cytokine release syndrome toxicities. The authors demonstrated criteria to diagnose severe cytokine release syndrome (sCRS) and treated sCRS with either high-dose steroids or with tocilizumab, an IL-6 receptor-specific mAb. Although both alleviated sCRS, steroid treatment negated the beneficial effects of CAR T-cell therapy, whereas tocilizumab did not. Taken together, CAR T-cell immunotherapy can be used as a safe and effective approach against tumors with known tumor-associated antigens.