Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 173(5): 1083-1097.e22, 2018 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-29754819

RESUMEN

The nervous system, the immune system, and microbial pathogens interact closely at barrier tissues. Here, we find that a bacterial pathogen, Streptococcus pyogenes, hijacks pain and neuronal regulation of the immune response to promote bacterial survival. Necrotizing fasciitis is a life-threatening soft tissue infection in which "pain is out of proportion" to early physical manifestations. We find that S. pyogenes, the leading cause of necrotizing fasciitis, secretes streptolysin S (SLS) to directly activate nociceptor neurons and produce pain during infection. Nociceptors, in turn, release the neuropeptide calcitonin gene-related peptide (CGRP) into infected tissues, which inhibits the recruitment of neutrophils and opsonophagocytic killing of S. pyogenes. Botulinum neurotoxin A and CGRP antagonism block neuron-mediated suppression of host defense, thereby preventing and treating S. pyogenes necrotizing infection. We conclude that targeting the peripheral nervous system and blocking neuro-immune communication is a promising strategy to treat highly invasive bacterial infections. VIDEO ABSTRACT.


Asunto(s)
Neuronas/metabolismo , Neutrófilos/metabolismo , Infecciones Estreptocócicas/patología , Streptococcus pyogenes/patogenicidad , Animales , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/metabolismo , Toxinas Botulínicas Tipo A/administración & dosificación , Péptido Relacionado con Gen de Calcitonina/metabolismo , Caspasa 1/deficiencia , Caspasa 1/genética , Diterpenos/farmacología , Fascitis Necrotizante/etiología , Fascitis Necrotizante/patología , Fascitis Necrotizante/veterinaria , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/citología , Neuronas/efectos de los fármacos , Neutrófilos/inmunología , Dolor/etiología , Transducción de Señal , Piel/metabolismo , Piel/patología , Infecciones Estreptocócicas/complicaciones , Infecciones Estreptocócicas/veterinaria , Streptococcus pyogenes/metabolismo , Estreptolisinas/inmunología , Estreptolisinas/metabolismo , Canales Catiónicos TRPV/deficiencia , Canales Catiónicos TRPV/genética
2.
Clin Infect Dis ; 77(6): 917-924, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37232372

RESUMEN

Streptococcus pyogenes (Strep A) infections result in a vastly underestimated burden of acute and chronic disease globally. The Strep A Vaccine Global Consortium's (SAVAC's) mission is to accelerate the development of safe, effective, and affordable S. pyogenes vaccines. The safety of vaccine recipients is of paramount importance. A single S. pyogenes vaccine clinical trial conducted in the 1960s raised important safety concerns. A SAVAC Safety Working Group was established to review the safety assessment methodology and results of more recent early-phase clinical trials and to consider future challenges for vaccine safety assessments across all phases of vaccine development. No clinical or biological safety signals were detected in any of these early-phase trials in the modern era. Improvements in vaccine safety assessments need further consideration, particularly for pediatric clinical trials, large-scale efficacy trials, and preparation for post-marketing pharmacovigilance.


Asunto(s)
Infecciones Estreptocócicas , Vacunas Estreptocócicas , Niño , Humanos , Infecciones Estreptocócicas/tratamiento farmacológico , Streptococcus pyogenes , Ensayos Clínicos como Asunto
3.
J Immunol ; 207(4): 1138-1149, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34341168

RESUMEN

Group A streptococcal infections are a significant cause of global morbidity and mortality. A leading vaccine candidate is the surface M protein, a major virulence determinant and protective Ag. One obstacle to the development of M protein-based vaccines is the >200 different M types defined by the N-terminal sequences that contain protective epitopes. Despite sequence variability, M proteins share coiled-coil structural motifs that bind host proteins required for virulence. In this study, we exploit this potential Achilles heel of conserved structure to predict cross-reactive M peptides that could serve as broadly protective vaccine Ags. Combining sequences with structural predictions, six heterologous M peptides in a sequence-related cluster were predicted to elicit cross-reactive Abs with the remaining five nonvaccine M types in the cluster. The six-valent vaccine elicited Abs in rabbits that reacted with all 11 M peptides in the cluster and functional opsonic Abs against vaccine and nonvaccine M types in the cluster. We next immunized mice with four sequence-unrelated M peptides predicted to contain different coiled-coil propensities and tested the antisera for cross-reactivity against 41 heterologous M peptides. Based on these results, we developed an improved algorithm to select cross-reactive peptide pairs using additional parameters of coiled-coil length and propensity. The revised algorithm accurately predicted cross-reactive Ab binding, improving the Matthews correlation coefficient from 0.42 to 0.74. These results form the basis for selecting the minimum number of N-terminal M peptides to include in potentially broadly efficacious multivalent vaccines that could impact the overall global burden of group A streptococcal diseases.


Asunto(s)
Antígenos Bacterianos/inmunología , Proteínas de la Membrana Bacteriana Externa/inmunología , Proteínas Bacterianas/inmunología , Proteínas Portadoras/inmunología , Reacciones Cruzadas/inmunología , Vacunas Estreptocócicas/inmunología , Animales , Anticuerpos Antibacterianos/inmunología , Epítopos/inmunología , Femenino , Humanos , Masculino , Ratones , Péptidos/inmunología , Vacunas Sintéticas/inmunología
4.
J Biol Chem ; 295(12): 3826-3836, 2020 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-32029479

RESUMEN

Group A streptococcus (Strep A) surface M protein, an α-helical coiled-coil dimer, is a vaccine target and a major determinant of streptococcal virulence. The sequence-variable N-terminal region of the M protein defines the M type and also contains epitopes that promote opsonophagocytic killing of streptococci. Recent reports have reported considerable cross-reactivity among different M types, suggesting the prospect of identifying cross-protective epitopes that would constitute a broadly protective multivalent vaccine against Strep A isolates. Here, we have used a combination of immunological assays, structural biology, and cheminformatics to construct a recombinant M protein-based vaccine that included six Strep A M peptides that were predicted to elicit antisera that would cross-react with an additional 15 nonvaccine M types of Strep A. Rabbit antisera against this recombinant vaccine cross-reacted with 10 of the 15 nonvaccine M peptides. Two of the five nonvaccine M peptides that did not cross-react shared high sequence identity (≥50%) with the vaccine peptides, implying that high sequence identity alone was insufficient for cross-reactivity among the M peptides. Additional structural analyses revealed that the sequence identity at corresponding polar helical-wheel heptad sites between vaccine and nonvaccine peptides accurately distinguishes cross-reactive from non-cross-reactive peptides. On the basis of these observations, we developed a scoring algorithm based on the sequence identity at polar heptad sites. When applied to all epidemiologically important M types, this algorithm should enable the selection of a minimal number of M peptide-based vaccine candidates that elicit broadly protective immunity against Strep A.


Asunto(s)
Anticuerpos Antibacterianos/inmunología , Antígenos Bacterianos/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Portadoras/metabolismo , Péptidos/inmunología , Streptococcus pyogenes/metabolismo , Vacunas Sintéticas/inmunología , Algoritmos , Secuencia de Aminoácidos , Animales , Reacciones Antígeno-Anticuerpo , Antígenos Bacterianos/química , Antígenos Bacterianos/inmunología , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/inmunología , Proteínas Portadoras/química , Proteínas Portadoras/inmunología , Análisis por Conglomerados , Reacciones Cruzadas , Epítopos/inmunología , Péptidos/química , Conformación Proteica en Hélice alfa , Conejos , Streptococcus pyogenes/inmunología
5.
Curr Opin Infect Dis ; 33(3): 244-250, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32304470

RESUMEN

PURPOSE OF REVIEW: There is a global need for well tolerated, effective, and affordable vaccines to prevent group A streptococcal infections and their most serious complications. The aim of this review is to highlight the recent progress in the identification of promising vaccine antigens and new approaches to vaccine design that address the complexities of group A streptococcal pathogenesis and epidemiology. RECENT FINDINGS: Combination vaccines containing multiple shared, cross-protective antigens have proven efficacious in mouse and nonhuman primate models of infection. The development of complex multivalent M protein-based vaccines is continuing and several have progressed through early-stage human clinical trials. Formulations of vaccines containing universal T-cell epitopes, toll-like receptor agonists, and other adjuvants more potent than alum have been shown to enhance protective immunogenicity. Although the group A streptococcal vaccine antigen landscape is populated with a number of potential candidates, the clinical development of vaccines has been impeded by a number of factors. There are now concerted global efforts to raise awareness about the need for group A streptococcal vaccines and to support progress toward eventual commercialization and licensure. SUMMARY: Preclinical antigen discovery, vaccine formulation, and efficacy studies in animal models have progressed significantly in recent years. There is now a need to move promising candidates through the clinical development pathway to establish their efficacy in preventing group A streptococcal infections and their complications.


Asunto(s)
Antígenos Bacterianos/inmunología , Infecciones Estreptocócicas/prevención & control , Vacunas Estreptocócicas/inmunología , Streptococcus pyogenes/inmunología , Adyuvantes Inmunológicos , Humanos , Inmunogenicidad Vacunal , Infecciones Estreptocócicas/epidemiología , Infecciones Estreptocócicas/microbiología , Streptococcus pyogenes/patogenicidad
6.
Microbiol Immunol ; 62(11): 711-719, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30357922

RESUMEN

Protein subunit vaccines are often preferred because of their protective efficacy and safety. Lactic acid bacteria expressing heterologous antigens constitute a promising approach to vaccine development. However, their safety in terms of toxicity and bacterial clearance must be evaluated. Anti-Streptococcus pyogenes (S. pyogenes) vaccines face additional safety concerns because they may elicit autoimmune responses. The assessment of toxicity, clearance and autoimmunity of an anti-streptococcal vaccine based on Lactococcus lactis (L. lactis) expressing 10 different M protein fragments from S. pyogenes (L. lactis-Mx10) is here reported. Clearance of L. lactis from the oropharynges of immunocompetent mice and mice devoid of T/B lymphocytes mice was achieved without using antibiotics. The absence of autoimmune responses against human tissues was demonstrated with human brain, heart and kidney. Assessment of toxicity showed that leucocyte counts and selected serum biochemical factors were not affected in L. lactis-Mx10-immunized mice. In contrast, mice immunized with L. lactis wild type vector (L. lactis-WT) showed increased neutrophil and monocyte counts and altered histopathology of lymph nodes, lungs and nasal epithelium. Two days after immunization, L. lactis-Mx10-immunized and L. lactis-WT-immunized mice weighed significantly less than unimmunized mice. However, both groups of immunized mice recovered their body weights by Day 6. Our results demonstrate that L. lactis-WT, but not the vaccine L. lactis-Mx10, induces alterations in certain hematologic and histopathological variables. We consider these data a major contribution to data on L. lactis as a bacterial vector for vaccine delivery.


Asunto(s)
Administración Intranasal/métodos , Antígenos Bacterianos/inmunología , Lactococcus lactis/inmunología , Infecciones Estreptocócicas/prevención & control , Vacunas Estreptocócicas/inmunología , Streptococcus pyogenes/inmunología , Vacunación/métodos , Vacunas Atenuadas/inmunología , Animales , Anticuerpos Antibacterianos/sangre , Antígenos Bacterianos/genética , Autoinmunidad/inmunología , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/inmunología , Encéfalo/inmunología , Proteínas Portadoras/genética , Proteínas Portadoras/inmunología , Modelos Animales de Enfermedad , Femenino , Humanos , Inmunización , Riñón/inmunología , Lactococcus lactis/genética , Pulmón/microbiología , Pulmón/patología , Ganglios Linfáticos/patología , Ratones , Ratones Endogámicos BALB C , Miocardio/inmunología , Mucosa Nasal/patología , Infecciones Estreptocócicas/inmunología , Vacunas Estreptocócicas/administración & dosificación , Vacunas Estreptocócicas/genética , Vacunas Estreptocócicas/toxicidad , Streptococcus pyogenes/genética , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/genética
7.
Microbiol Immunol ; 62(6): 395-404, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29704396

RESUMEN

Streptococcus pyogenes (group A Streptococcus) causes diseases ranging from mild pharyngitis to severe invasive infections. The N-terminal fragment of streptococcal M protein elicits protective antibodies and is an attractive vaccine target. However, this N- terminal fragment is hypervariable: there are more than 200 different M types. In this study, an intranasal live bacterial vaccine comprising 10 strains of Lactococcus lactis, each expressing one N-terminal fragment of M protein, has been developed. Live bacterial-vectored vaccines cost less to manufacture because the processes involved are less complex than those required for production of protein subunit vaccines. Moreover, intranasal administration does not require syringes or specialized personnel. Evaluation of individual vaccine types (M1, M2, M3, M4, M6, M9, M12, M22, M28 and M77) showed that most of them protected mice against challenge with virulent S. pyogenes. All 10 strains combined in a 10-valent vaccine (M×10) induced serum and bronchoalveolar lavage IgG titers that ranged from three- to 10-fold those of unimmunized mice. After intranasal challenge with M28 streptococci, survival of M×10-immunized mice was significantly higher than that of unimmunized mice. In contrast, when mice were challenged with M75 streptococci, survival of M×10-immunized mice did not differ significantly from that of unimmunized mice. Mx-10 immunized mice had significantly less S. pyogenes in oropharyngeal washes and developed less severe disease symptoms after challenge than did unimmunized mice. Our L. lactis-based vaccine may provide an alternative solution to development of broadly protective group A streptococcal vaccines.


Asunto(s)
Administración Intranasal/métodos , Antígenos Bacterianos/inmunología , Proteínas de la Membrana Bacteriana Externa/inmunología , Proteínas Portadoras/inmunología , Lactococcus lactis/inmunología , Infecciones Estreptocócicas/prevención & control , Vacunas Estreptocócicas/inmunología , Streptococcus pyogenes/inmunología , Vacunación/métodos , Vacunas Atenuadas/inmunología , Animales , Anticuerpos Antibacterianos/sangre , Antígenos Bacterianos/clasificación , Antígenos Bacterianos/metabolismo , Proteínas de la Membrana Bacteriana Externa/clasificación , Proteínas de la Membrana Bacteriana Externa/metabolismo , Peso Corporal , Proteínas Portadoras/clasificación , Proteínas Portadoras/metabolismo , Modelos Animales de Enfermedad , Femenino , Inmunidad , Inmunización , Inmunoglobulina G/sangre , Lactococcus lactis/patogenicidad , Ratones , Ratones Endogámicos BALB C , Infecciones Estreptocócicas/inmunología , Infecciones Estreptocócicas/microbiología , Vacunas Estreptocócicas/administración & dosificación , Resultado del Tratamiento , Vacunas Atenuadas/administración & dosificación , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/inmunología
8.
Clin Infect Dis ; 65(9): 1523-1531, 2017 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-29020160

RESUMEN

BACKGROUND: Group A Streptococcus (GAS) skin infections are particularly prevalent in developing nations. The GAS M protein, by which strains are differentiated into >220 different emm types, is immunogenic and elicits protective antibodies. A major obstacle for vaccine development has been the traditional understanding that immunity following infection is restricted to a single emm type. However, recent evidence has led to the hypothesis of immune cross-reactivity between emm types. METHODS: We investigated the human serological response to GAS impetigo in Fijian schoolchildren, focusing on 3 major emm clusters (E4, E6, and D4). Pre- and postinfection sera were assayed by enzyme-linked immunosorbent assay with N-terminal M peptides and bactericidal assays using the infecting-type strain, emm cluster-related strains, and nonrelated strains. RESULTS: Twenty of the 53 paired sera demonstrated a ≥4-fold increase in antibody titer against the infecting type. When tested against all cluster-related M peptides, we found that 9 of 17 (53%) paired sera had a ≥4-fold increase in antibody titer to cluster-related strains as well. When grouped by cluster, the mean change to cluster-related emm types in E4 and E6 was >4-fold (5.9-fold and 19.5-fold, respectively) but for D4 was 3.8-fold. The 17 paired sera were tested in bactericidal assays against selected cluster-related and nonrelated strains. While the responses were highly variable, numerous instances of cross-reactive killing were observed. CONCLUSIONS: These data demonstrate that M type-specific and cross-reactive immune responses occur following skin infection. The cross-reactive immune responses frequently align with emm clusters, raising new opportunities to design multivalent vaccines with broad coverage.


Asunto(s)
Antígenos Bacterianos/inmunología , Proteínas de la Membrana Bacteriana Externa/inmunología , Proteínas Portadoras/inmunología , Enfermedades Cutáneas Bacterianas/epidemiología , Enfermedades Cutáneas Bacterianas/inmunología , Infecciones Estreptocócicas/epidemiología , Infecciones Estreptocócicas/inmunología , Streptococcus pyogenes/inmunología , Adolescente , Anticuerpos Antibacterianos/sangre , Anticuerpos Antibacterianos/inmunología , Niño , Preescolar , Ensayo de Inmunoadsorción Enzimática , Fiji/epidemiología , Humanos , Estudios Longitudinales , Estudiantes
10.
J Infect Dis ; 210(8): 1325-38, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24799598

RESUMEN

Streptococcus pyogenes ranks among the main causes of mortality from bacterial infections worldwide. Currently there is no vaccine to prevent diseases such as rheumatic heart disease and invasive streptococcal infection. The streptococcal M protein that is used as the substrate for epidemiological typing is both a virulence factor and a vaccine antigen. Over 220 variants of this protein have been described, making comparisons between proteins difficult, and hindering M protein-based vaccine development. A functional classification based on 48 emm-clusters containing closely related M proteins that share binding and structural properties is proposed. The need for a paradigm shift from type-specific immunity against S. pyogenes to emm-cluster based immunity for this bacterium should be further investigated. Implementation of this emm-cluster-based system as a standard typing scheme for S. pyogenes will facilitate the design of future studies of M protein function, streptococcal virulence, epidemiological surveillance, and vaccine development.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Vacunas Estreptocócicas/inmunología , Streptococcus pyogenes/clasificación , Streptococcus pyogenes/fisiología , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Clonación Molecular , Datos de Secuencia Molecular , Filogenia , Proteínas Recombinantes
11.
Vaccine ; 42(22): 126205, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39141987

RESUMEN

BACKGROUND: Group A Streptococcus (Strep A) causes both uncomplicated and severe invasive infections, as well as the post-infection complications acute rheumatic fever and rheumatic heart disease. Despite the high global burden of disease resulting from Strep A infections, there is not a licensed vaccine. A 30-valent M protein-based vaccine has previously been shown to be immunogenic in animal models and in a Phase I clinical trial (NCT02564237). Here, we assessed the immunogenicity of a 30-valent messenger (m)RNA vaccine designed to express the same M peptide targets as the 30-valent protein vaccine and compared it with the protein vaccine. METHODS: Female New Zealand white rabbits were immunized with one of four vaccine formulations (3 doses of each formulation at days 1, 28, and 56): soluble mRNA (100 µg/animal), C-terminal transmembrane mRNA (100 µg/animal), protein vaccine (400 µg/animal), or a non-translatable RNA control (100 µg/animal). Serum was collected one day prior to the first dose and on days 42 and 70. Rabbit serum samples were assayed for antibody levels against synthetic M peptides by ELISA. HL-60 opsonophagocytic killing (OPK) assays were performed to assess functional antibody levels. RESULTS: Serum IgG levels were similar for the mRNA and protein vaccines. The CtTM version of the mRNA vaccine elicited slightly higher antibody levels than the mRNA designed to express soluble proteins. OPK activity was similar for the mRNA and protein vaccines, regardless of M type. CONCLUSIONS: The total antibody responses and functional antibody levels elicited by the 30-valent mRNA Strep A vaccines were similar to those observed following immunization with the analogous protein vaccine. The mRNA vaccine platform provides potential advantages to protein-based vaccines including inherent adjuvant activity, increased production efficiency, lower cost, and the potential to rapidly change epitopes/peptides, all of which are important considerations related to multivalent Strep A vaccine development.


Asunto(s)
Anticuerpos Antibacterianos , Antígenos Bacterianos , Infecciones Estreptocócicas , Vacunas Estreptocócicas , Streptococcus pyogenes , Animales , Femenino , Conejos , Anticuerpos Antibacterianos/sangre , Anticuerpos Antibacterianos/inmunología , Antígenos Bacterianos/inmunología , Antígenos Bacterianos/genética , Proteínas de la Membrana Bacteriana Externa/inmunología , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas Portadoras/inmunología , Proteínas Portadoras/genética , Inmunogenicidad Vacunal , ARN Mensajero/genética , ARN Mensajero/inmunología , Infecciones Estreptocócicas/prevención & control , Infecciones Estreptocócicas/inmunología , Vacunas Estreptocócicas/inmunología , Vacunas Estreptocócicas/administración & dosificación , Vacunas Estreptocócicas/genética , Streptococcus pyogenes/inmunología , Streptococcus pyogenes/genética , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/administración & dosificación , Ensayos Clínicos Fase I como Asunto
12.
Vaccine ; 41(40): 5841-5847, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37596198

RESUMEN

The M protein of group A streptococci (Strep A) is a major virulence determinant and protective antigen. The N-terminal region of the M protein is variable in sequence, defines the M/emm type, and contains epitopes that elicit opsonic antibodies that protect animals from challenge infections. Although there are >200 M types of Strep A, there is now evidence that structurally related M proteins can be grouped into clusters and that immunity may be cluster-specific in addition to M type-specific. This observation has led to recent studies of structure-based design of multivalent M peptide vaccines to select peptides predicted to cross-react with heterologous M types to improve vaccine coverage. In the current study, we have applied a refined series of peptide structural algorithms to predict immunological cross-reactivity among 117 N-terminal M peptides representing the most prevalent M types of Strep A. Based on the results of the structural analyses, in combination with global M type prevalence data, we constructed a 32-valent vaccine containing 19 cross-reactive vaccine candidates predicted to cross-react with 37 heterologous M peptides to which were added 13 type-specific M peptides. The 4-protein recombinant vaccine was immunogenic in rabbits and elicited significant levels of antibodies against 31/32 (97%) vaccine peptides and 28/37 (76%) peptides predicted to cross-react. The vaccine antisera also promoted opsonophagocytic killing of vaccine and cross-reactive M types of Strep A. Based on a recent analysis of M type prevalence of Strep A, the potential global coverage of the 32-valent vaccine is âˆ¼90%, ranging from 68% in Africa to 95% in North America. Our results indicate the utility of structure-based design that may be applied to future studies of broadly protective M peptide vaccines.


Asunto(s)
Vacunas Estreptocócicas , Streptococcus pyogenes , Animales , Conejos , Vacunas Combinadas , África , Algoritmos , Anticuerpos
13.
BMJ Glob Health ; 8(Suppl 9)2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37914184

RESUMEN

Primary prevention of acute rheumatic fever (ARF) and rheumatic heart disease (RHD) encompasses the timely diagnosis and adequate treatment of the superficial group A Streptococcus (GAS) infections pharyngitis and impetigo. GAS is the only known inciting agent in the pathophysiology of the disease. However, sufficient evidence indicates that the uptake and delivery of primary prevention approaches in RHD-endemic regions are significantly suboptimal. This report presents expert deliberations on priority research and implementation opportunities for primary prevention of ARF/RHD that were developed as part of a workshop convened by the US National Heart, Lung, and Blood Institute in November 2021. The opportunities identified by the Primary Prevention Working Group encompass epidemiological, laboratory, clinical, implementation and dissemination research domains and are anchored on five pillars including: (A) to gain a better understanding of superficial GAS infection epidemiology to guide programmes and policies; (B) to improve diagnosis of superficial GAS infections in RHD endemic settings; (C) to develop scalable and sustainable models for delivery of primary prevention; (D) to understand potential downstream effects of the scale-up of primary prevention and (E) to develop and conduct economic evaluations of primary prevention strategies in RHD endemic settings. In view of the multisectoral stakeholders in primary prevention strategies, we emphasise the need for community co-design and government engagement, especially in the implementation and dissemination research arena. We present these opportunities as a reference point for research organisations and sponsors who aim to contribute to the increasing momentum towards the global control and prevention of RHD.


Asunto(s)
Fiebre Reumática , Cardiopatía Reumática , Humanos , National Heart, Lung, and Blood Institute (U.S.) , Prevención Primaria , Fiebre Reumática/diagnóstico , Fiebre Reumática/prevención & control , Fiebre Reumática/epidemiología , Cardiopatía Reumática/diagnóstico , Cardiopatía Reumática/prevención & control , Cardiopatía Reumática/epidemiología , Estados Unidos
14.
mSphere ; 8(3): e0011323, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37154726

RESUMEN

There is limited information on the human immune response following infection with group A Streptococcus (Strep A). Animal studies have shown, in addition to the M protein, that shared Strep A antigens elicit protective immunity. This study aimed to investigate the kinetics of antibody responses against a panel of Strep A antigens in a cohort of school-aged children in Cape Town, South Africa. Participants provided serial throat cultures and serum samples at two-monthly follow-up visits. Strep A recovered were emm-typed, and serum samples were analyzed by enzyme-linked immunosorbent assay (ELISA) to assess immune responses to thirty-five Strep A antigens (10-shared and 25-M peptides). Serologic evaluations were performed on serial serum samples from 42 selected participants (from 256 enrolled) based on the number of follow-up visits, the frequency of visits, and throat culture results. Among these, there were 44 Strep A acquisitions, 36 of which were successfully emm-typed. Participants were grouped into three clinical event groups based on culture results and immune responses. A preceding infection was most convincingly represented by a Strep A-positive culture with an immune response to at least one shared antigen and M peptide (11 events) or a Strep A-negative culture with antibody responses to shared antigens and M peptides (9 events). More than a third of participants demonstrated no immune response despite a positive culture. This study provided important information regarding the complexity and variability of human immune responses following pharyngeal acquisition of Strep A, as well as demonstrating the immunogenicity of Strep A antigens currently under consideration as potential vaccine candidates. IMPORTANCE There is currently limited information regarding the human immune response to group A streptococcal throat infection. An understanding of the kinetics and specificity of antibody responses against a panel of Group A Streptococcus (GAS) antigens will serve to refine diagnostic approaches and contribute to vaccine efforts, which together will serve to reduce the burden of rheumatic heart disease, a major source of morbidity and mortality especially in the developing world. This study, utilizing an antibody-specific assay, uncovered three patterns of response profiles following GAS infection, among 256 children presenting with sore throat to local clinics. Overall, the response profiles were complex and variable. Of note, a preceding infection was most convincingly represented by a GAS-positive culture with an immune response to at least one shared antigen and M peptide. Also, more than a third of participants demonstrated no immune response despite a positive culture. All antigens tested were immunogenic, providing guidance for future vaccine development.


Asunto(s)
Faringitis , Infecciones Estreptocócicas , Animales , Humanos , Niño , Faringe , Sudáfrica , Streptococcus pyogenes , Antígenos Bacterianos , Péptidos
15.
J Infect Dis ; 201(10): 1580-8, 2010 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-20367460

RESUMEN

BACKGROUND: The NH(2)-terminal sequence of the M protein from group A streptococci defines the serotype of the organism and contains epitopes that evoke bactericidal antibodies. METHODS: To identify additional roles for this region of the M protein, we constructed a mutant of M5 group A streptococci expressing an M protein with a deletion of amino acid residues 3-22 (DeltaNH(2)). RESULTS: M5 streptococci and the DeltaNH(2) mutant were resistant to phagocytosis and were similarly virulent in mice. However, DeltaNH(2) was significantly less hydrophobic, contained less lipoteichoic acid on its surface, and demonstrated reduced adherence to epithelial cells. These differences were abolished when organisms were grown in the presence of protease inhibitors. Treatment with cysteine proteases or with human saliva resulted in the release of M protein from the DeltaNH(2) mutant at a significantly greater rate than observed with the wild-type M5 strain. Compared with the parent strain, the DeltaNH(2) strain also showed a significant reduction in its ability to colonize the upper respiratory mucosa of mice. CONCLUSIONS: The NH(2) terminus of M5 protein has an important role in protecting the surface protein from proteolytic cleavage, thus preserving its function as an anchor for lipoteichoic acid, which is a primary mediator of adherence to epithelial cells and colonization.


Asunto(s)
Proteínas Bacterianas/metabolismo , Mucosa Respiratoria/microbiología , Streptococcus pyogenes/inmunología , Streptococcus pyogenes/metabolismo , Animales , Femenino , Ratones
16.
Front Cardiovasc Med ; 8: 691646, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34355030

RESUMEN

Background: Previous studies have established that streptococcal antibody titer is correlated with a diagnosis of acute rheumatic fever (ARF). However, results vary in the usefulness of GAS antibodies, particularly anti-streptolysin-O (ASO) and anti-DNase B, in confirming a recent GAS infection. Therefore, we sought to provide, from published studies, an evidence-based synthesis of the correlation of streptococcal serology to establish the usefulness of immunological data in aiding the diagnosis of ARF. These findings are anticipated to have implications where echocardiography is not freely available, especially where ARF is rampant. Methods: We conducted a comprehensive search across a number of databases. Applying a priori criteria, we selected articles reporting on studies, regardless of study design, that evaluate the levels of antibodies against GAS-specific antigens in ARF subjects against control values or a published standard. Data were extracted onto data extraction forms, captured electronically, and analyzed using Stata software. Risk of bias was assessed in included studies using the Newcastle-Ottawa Scale (NOS). Results and Conclusion: The search strategy yielded 534 studies, from which 24 met the inclusion criteria, reporting on evaluation of titers for SLO (n = 10), DNase B (n = 9), anti-streptokinase (ASK) (n = 3) amongst others. Elevation in titers was determined by comparison with controls and upper limit of normal (ULN) antibody values as determined in healthy individuals. Meta-analysis of case-controlled studies revealed moderate odds ratio (OR) correlations between ARF diagnosis and elevated titers for SLO (OR = 10.57; 95% CI, 3.36-33.29; 10 studies) and DNAse B (OR = 6.97; 95% CI, 2.99-16.27; 7 studies). While providing support for incorporating SLO and DNase B in the diagnosis of ARF, we present the following reflections: an elevation in SLO and DNase B levels are not consistently associated with an ARF diagnosis; increasing the number of GAS proteins in the test is warranted to improve sensitivity; paired (acute and convalescent) samples could provide a more accurate indication of a rising titer. Use of community-based controls as a standard is not a reliable marker by which to gauge recent GAS infection.

17.
Vaccine ; 39(12): 1773-1779, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33642159

RESUMEN

The M protein of group A streptococci (Strep A) is a major virulence determinant and protective antigen. The N-terminal sequence of the protein defines the more than 200 M types of Strep A and also contains epitopes that elicit opsonic antibodies, some of which cross-react with heterologous M types. Current efforts to develop broadly protective M protein-based vaccines are directed at identifying potential cross-protective epitopes located in the N-terminal regions of cluster-related M proteins for use as vaccine antigens. In this study, we have used a comprehensive approach using the recurrent neural network ABCpred and IEDB epitope conservancy analysis tools to predict 16 residue linear B-cell epitopes from 117 clinically relevant M types of Strep A (~88% of global Strep A infections). To examine the immunogenicity of these epitope-based vaccines, nine peptides that together shared ≥60% sequence identity with 37 heterologous M proteins were incorporated into two recombinant hybrid protein vaccines, in which the epitopes were repeated 2 or 3 times, respectively. The combined immune responses of immunized rabbits showed that the vaccines elicited significant levels of antibodies against all nine vaccine epitopes present in homologous N-terminal 1-50 amino acid synthetic M peptides, as well as cross-reactive antibodies against 16 of 37 heterologous M peptides predicted to contain similar epitopes. The epitope-specificity of the cross-reactive antibodies was confirmed by ELISA inhibition assays and functional opsonic activity was assayed in HL-60-based bactericidal assays. The results provide important information for the future design of broadly protective M protein-based Strep A vaccines.


Asunto(s)
Antígenos Bacterianos , Vacunas Estreptocócicas , Animales , Anticuerpos Antibacterianos , Proteínas de la Membrana Bacteriana Externa , Proteínas Bacterianas/genética , Proteínas Portadoras , Epítopos , Redes Neurales de la Computación , Conejos , Streptococcus pyogenes
18.
Lancet Microbe ; 2(7): e291-e299, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-35544165

RESUMEN

BACKGROUND: Streptococcus pyogenes is a leading cause of infection-related morbidity and mortality. A reinvigorated vaccine development effort calls for new clinically relevant human S pyogenes experimental infection models to support proof of concept evaluation of candidate vaccines. We describe the initial Controlled Human Infection for Vaccination Against S pyogenes (CHIVAS-M75) study, in which we aimed to identify a dose of emm75 S pyogenes that causes acute pharyngitis in at least 60% of volunteers when applied to the pharynx by swab. METHODS: This observational, dose-finding study was done in a clinical trials facility in Melbourne (VIC, Australia). Groups of healthy volunteers aged 18-40 years, at low risk of complicated S pyogenes disease, and without high type-specific anti-emm75 IgG antibodies against the challenge strain were challenged and closely monitored as inpatients for up to 6 days, and then as outpatients for 6 months. Antibiotics were started upon diagnosis (clinical signs and symptoms of pharyngitis and a positive rapid molecular test) or after 5 days in those without pharyngitis. Rapid test results were confirmed by standard bacterial culture. After a sentinel participant, cohorts of five and then ten participants were challenged, with protocol-directed dose-escalation or de-escalation for subsequent cohorts. The primary outcome was the proportion of participants at each dose level with pharyngitis by day 5 after challenge. The study is registered with ClinicalTrials.gov, NCT03361163. FINDINGS: Between July 10, 2018, and Sept 23, 2019, 25 healthy adults were challenged with emm75 S pyogenes and included in analyses. Pharyngitis was diagnosed in 17 (85%; 95% CI 62-97) of 20 participants at the starting dose level (1-3 × 105 colony-forming units [CFU]/mL). This high proportion prompted dose de-escalation. At the lower dose level (1-3 × 104 CFU/mL), pharyngitis was diagnosed in one of five participants. Immunological, biochemical, and microbiological results supported the clinical picture, with acute symptomatic pharyngitis characterised by pharyngeal colonisation by S pyogenes accompanied by significantly elevated C-reactive protein and inflammatory cytokines (eg, interferon-γ and interleukin-6), and modest serological responses to streptolysin O and deoxyribonuclease B. There were no severe (grade 3) or serious adverse events related to challenge. INTERPRETATION: We have established a reliable pharyngitis human infection model with reassuring early safety findings to accelerate development of vaccines and other interventions to control disease due to S pyogenes. FUNDING: Australian National Health and Medical Research Council.


Asunto(s)
Faringitis , Escarlatina , Adulto , Australia , Humanos , Faringitis/tratamiento farmacológico , Faringe/microbiología , Streptococcus pyogenes
19.
mSphere ; 5(4)2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32669471

RESUMEN

An emm-cluster based system was proposed as a standard typing scheme to facilitate and enhance future studies of group A Streptococcus (GAS) epidemiological surveillance, M protein function, and vaccine development strategies. We provide an evidence-based distribution of GAS emm clusters in Africa and assess the potential coverage of the new 30-valent vaccine in terms of an emm cluster-based approach. Two reviewers independently assessed studies retrieved from a comprehensive search and extracted relevant data. Meta-analyses were performed (random-effects model) to aggregate emm cluster prevalence estimates. Eight studies (n = 1,595 isolates) revealed the predominant emm clusters as E6 (18%; 95% confidence interval [CI], 12.6% to 24.0%), followed by E3 (14%; 95% CI, 11.2% to 17.4%) and E4 (13%; 95% CI, 9.5% to 16.0%). There was negligible variation in emm clusters with regard to regions, age, and socioeconomic status across the continent. Considering an emm cluster-based vaccine strategy, which assumes cross-protection within clusters, the 30-valent vaccine currently in clinical development would provide hypothetical coverage to 80.3% of isolates in Africa. This systematic review indicates the most predominant GAS emm cluster in Africa is E6 followed by E3, E4, and D4. The current 30-valent vaccine would provide considerable coverage across the diversity of emm cluster types in Africa. Future efforts could be directed toward estimating the overall potential coverage of the new 30-valent vaccine based on cross-opsonization studies with representative panels of GAS isolates from populations at highest risk for GAS diseases.IMPORTANCE Low vaccine coverage is of grave public health concern, particularly in developing countries where epidemiological data are often absent. To inform vaccine development for group A Streptococcus (GAS), we report on the epidemiology of the M protein emm clusters from GAS infections in Africa, where GAS-related illnesses and their sequelae, including rheumatic fever and rheumatic heart disease, are of a high burden. This first report of emm clusters across the continent indicates a high probably of coverage by the M protein-based vaccine currently undergoing testing were an emm-cluster based approach to be used.


Asunto(s)
Antígenos Bacterianos/genética , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas Portadoras/genética , Infecciones Estreptocócicas/epidemiología , Infecciones Estreptocócicas/prevención & control , Vacunas Estreptocócicas/química , Streptococcus pyogenes/clasificación , África/epidemiología , Antígenos Bacterianos/química , Humanos , Prevalencia , Infecciones Estreptocócicas/microbiología
20.
Vaccine ; 38(6): 1384-1392, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31843270

RESUMEN

BACKGROUND: Streptococcus pyogenes (group A Streptococcus, Strep A) is a widespread pathogen that continues to pose a significant threat to human health. The development of a Strep A vaccine remains an unmet global health need. One of the major vaccine strategies is the use of M protein, which is a primary virulence determinant and protective antigen. Multivalent recombinant M protein vaccines are being developed with N-terminal M peptides that contain opsonic epitopes but do not contain human tissue cross-reactive epitopes. METHODS: We completed a Phase I trial of a recombinant 30-valent M protein-based Strep A vaccine (Strep A vaccine, StreptAnova™) comprised of four recombinant proteins containing N-terminal peptides from 30 M proteins of common pharyngitis and invasive and/or rheumatogenic serotypes, adjuvanted with aluminum hydroxide. The trial was observer-blinded and randomized in a 2:1 ratio for intramuscular administration of Strep A vaccine or an alum-based comparator in healthy adult volunteers, at 0, 30 and 180 days. Primary outcome measures were assessments of safety, including assays for antibodies that cross-reacted with host tissues, and immunogenicity assessed by ELISA with the individual vaccine peptides and by opsonophagocytic killing (OPK) assays in human blood. RESULTS: Twenty-three Strep A-vaccinated participants and 13 controls completed the study. The Strep A vaccine was well-tolerated and there was no clinical evidence of autoimmunity and no laboratory evidence of tissue cross-reactive antibodies. The vaccine was immunogenic and elicited significant increases in geometric mean antibody levels to 24 of the 30 component M antigens by ELISA. Vaccine-induced OPK activity was observed against selected M types of Strep A in vaccinated participants that seroconverted to specific M peptides. CONCLUSION: The Strep A vaccine was well tolerated and immunogenic in healthy adults, providing strong support for further clinical development. [ClinicalTrials.gov NCT02564237].


Asunto(s)
Antígenos Bacterianos/inmunología , Proteínas de la Membrana Bacteriana Externa/inmunología , Proteínas Portadoras/inmunología , Inmunogenicidad Vacunal , Vacunas Estreptocócicas/inmunología , Adulto , Anticuerpos Antibacterianos/inmunología , Voluntarios Sanos , Humanos , Proteínas Recombinantes/inmunología , Vacunas Estreptocócicas/efectos adversos , Streptococcus pyogenes/inmunología , Vacunas Sintéticas/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA