Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(47): e2208886119, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36375056

RESUMEN

Uterine leiomyoma is the most common tumor in women and causes severe morbidity in 15 to 30% of reproductive-age women. Epidemiological studies consistently indicate a correlation between leiomyoma development and exposure to endocrine-disrupting chemical phthalates, especially di-(2-ethylhexyl) phthalate (DEHP); however, the underlying mechanisms are unknown. Here, among the most commonly encountered phthalate metabolites, we found the strongest association between the urine levels of mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), the principal DEHP metabolite, and the risk of uterine leiomyoma diagnosis (n = 712 patients). The treatment of primary leiomyoma and smooth muscle cells (n = 29) with various mixtures of phthalate metabolites, at concentrations equivalent to those detected in urine samples, significantly increased cell viability and decreased apoptosis. MEHHP had the strongest effects on both cell viability and apoptosis. MEHHP increased cellular tryptophan and kynurenine levels strikingly and induced the expression of the tryptophan transporters SLC7A5 and SLC7A8, as well as, tryptophan 2,3-dioxygenase (TDO2), the key enzyme catalyzing the conversion of tryptophan to kynurenine that is the endogenous ligand of aryl hydrocarbon receptor (AHR). MEHHP stimulated nuclear localization of AHR and up-regulated the expression of CYP1A1 and CYP1B1, two prototype targets of AHR. siRNA knockdown or pharmacological inhibition of SLC7A5/SLC7A8, TDO2, or AHR abolished MEHHP-mediated effects on leiomyoma cell survival. These findings indicate that MEHHP promotes leiomyoma cell survival by activating the tryptophan-kynurenine-AHR pathway. This study pinpoints MEHHP exposure as a high-risk factor for leiomyoma growth, uncovers a mechanism by which exposure to environmental phthalate impacts leiomyoma pathogenesis, and may lead to the development of novel druggable targets.


Asunto(s)
Dietilhexil Ftalato , Contaminantes Ambientales , Leiomioma , Ácidos Ftálicos , Humanos , Femenino , Dietilhexil Ftalato/toxicidad , Dietilhexil Ftalato/orina , Quinurenina , Triptófano , Supervivencia Celular , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Transportador de Aminoácidos Neutros Grandes 1 , Exposición a Riesgos Ambientales/efectos adversos , Leiomioma/inducido químicamente , Leiomioma/orina
2.
J Proteome Res ; 23(1): 238-248, 2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-38085962

RESUMEN

Efforts to understand the complexities of human biology encompass multidimensional aspects, with proteins emerging as crucial components. However, studying the human ovary introduces unique challenges due to its complex dynamics and changes over a lifetime, varied cellular composition, and limited sample access. Here, four new RNA-seq samples of ovarian cortex spanning ages of 7 to 32 were sequenced and added to the existing data in the Human Protein Atlas (HPA) database www.proteinatlas.org, opening the doors to unique possibilities for exploration of oocyte-specific proteins. Based on transcriptomics analysis of the four new tissue samples representing both prepubertal girls and women of fertile age, we selected 20 protein candidates that lacked previous evidence at the protein level, so-called "missing proteins" (MPs). The proteins were validated using high-resolution antibody-based profiling and single-cell transcriptomics. Fourteen proteins exhibited consistent single-cell expression patterns in oocytes and granulosa cells, confirming their presence in the ovary and suggesting that these proteins play important roles in ovarian function, thus proposing that these 14 proteins should no longer be classified as MPs. This research significantly advances the understanding of MPs, unearthing fresh avenues for prospective exploration. By integrating innovative methodologies and leveraging the wealth of data in the HPA database, these insights contribute to refining our understanding of protein roles within the human ovary and opening the doors for further investigations into missing proteins and human reproduction.


Asunto(s)
Ovario , Proteómica , Humanos , Femenino , Estudios Prospectivos , Oocitos , Proteínas/metabolismo , Perfilación de la Expresión Génica
3.
Stem Cells ; 41(2): 105-110, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36153824

RESUMEN

Ovaries are central to development, fertility, and reproduction of women. A particularly interesting feature of ovaries is their accelerated aging compared to other tissues, leading to loss of function far before other organs senesce. The limited pool of ovarian follicles is generated before birth and once exhausted, menopause will inevitably commence around the age of 50 years marking the end of fertility. Yet, there are reports suggesting the presence of germline stem cells and neo-oogenesis in adult human ovaries. These observations have fueled a long debate, created experimental fertility treatments, and opened business opportunities. Our recent analysis of cell types in the ovarian cortex of women of fertile age could not find evidence of germline stem cells. Like before, our work has been met with critique suggesting methodological shortcomings. We agree that excellence starts with methods and welcome discussion on the pros and cons of different protocols. In this commentary, we discuss the recent re-interpretation of our work.


Asunto(s)
Oogénesis , Ovario , Adulto , Femenino , Humanos , Persona de Mediana Edad , Oogénesis/fisiología , Folículo Ovárico , Células Germinativas , Células Madre/metabolismo
4.
Reprod Biol Endocrinol ; 22(1): 60, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778396

RESUMEN

BACKGROUND: Reproduction in women is at risk due to exposure to chemicals that can disrupt the endocrine system during different windows of sensitivity throughout life. Steroid hormone levels are fundamental for the normal development and function of the human reproductive system, including the ovary. This study aims to elucidate steroidogenesis at different life-stages in human ovaries. METHODS: We have developed a sensitive and specific LC-MS/MS method for 21 important steroid hormones and measured them at different life stages: in media from cultures of human fetal ovaries collected from elective terminations of normally progressing pregnancy and in media from adult ovaries from Caesarean section patients, and follicular fluid from women undergoing infertility treatment. Statistically significant differences in steroid hormone levels and their ratios were calculated with parametric tests. Principal component analysis (PCA) was applied to explore clustering of the ovarian-derived steroidogenic profiles. RESULTS: Comparison of the 21 steroid hormones revealed clear differences between the various ovarian-derived steroid profiles. Interestingly, we found biosynthesis of both canonical and "backdoor" pathway steroid hormones and corticosteroids in first and second trimester fetal and adult ovarian tissue cultures. 17α-estradiol, a less potent naturally occurring isomer of 17ß-estradiol, was detected only in follicular fluid. PCA of the ovarian-derived profiles revealed clusters from: adult ovarian tissue cultures with relatively high levels of androgens; first trimester and second trimester fetal ovarian tissue cultures with relatively low estrogen levels; follicular fluid with the lowest androgens, but highest corticosteroid, progestogen and estradiol levels. Furthermore, ratios of specific steroid hormones showed higher estradiol/ testosterone and estrone/androstenedione (indicating higher CYP19A1 activity, p < 0.01) and higher 17-hydroxyprogesterone/progesterone and dehydroepiandrosterone /androstenedione (indicating higher CYP17A1 activity, p < 0.01) in fetal compared to adult ovarian tissue cultures. CONCLUSIONS: Human ovaries demonstrate de novo synthesis of non-canonical and "backdoor" pathway steroid hormones and corticosteroids. Elucidating the steroid profiles in human ovaries improves our understanding of physiological, life-stage dependent, steroidogenic capacity of ovaries and will inform mechanistic studies to identify endocrine disrupting chemicals that affect female reproduction.


Asunto(s)
Feto , Ovario , Humanos , Femenino , Ovario/metabolismo , Adulto , Embarazo , Feto/metabolismo , Hormonas Esteroides Gonadales/biosíntesis , Hormonas Esteroides Gonadales/metabolismo , Hormonas Esteroides Gonadales/análisis , Espectrometría de Masas en Tándem , Líquido Folicular/metabolismo , Líquido Folicular/química , Estradiol/metabolismo , Cromatografía Liquida
5.
J Assist Reprod Genet ; 41(4): 1035-1055, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38358432

RESUMEN

PURPOSE: Ovarian tissue cryopreservation is vital for fertility preservation, yet its effect on ovarian tissue follicle survival and transcriptomic signature requires further investigation. This study delves into the effects of vitrification on tissue morphology, function, and transcriptomic changes, helping to find possibilities for vitrification protocol improvements. METHODS: Ovarian cortex from 19 bovine animals were used to conduct pre- and post-vitrification culture followed by histological assessment, immunohistochemistry, and TUNEL assay. Follicles' functionality was assessed for viability and growth within the tissue and in isolated cultures. RNA-sequencing of ovarian tissue was used to explore the transcriptomic alterations caused by vitrification. RESULTS: Follicle density, cell proliferation, and DNA damage in ovarian stroma were unaffected by vitrification. However, vitrified cultured tissue exhibited reduced follicle density of primordial/primary and antral follicles, while freshly cultured tissue manifested reduction of antral follicles. Increased stromal cell proliferation and DNA damage occurred in both groups post-culture. Isolated follicles from vitrified tissue exhibited similar viability to fresh follicles until day 4, after which the survival dropped. RNA-sequencing revealed minor effects of vitrification on transcriptomic signatures, while culture induced significant gene expression changes in both groups. The altered expression of WNT and hormonal regulation pathway genes post-vitrification suggests the molecular targets for vitrification protocol refinement. CONCLUSION: Vitrification minimally affects tissue morphology, follicle density, and transcriptomic signature post-thawing. However, culture revealed notable changes in vitrified tissue samples, including reduced follicle density, decreased isolated follicle survival, and alteration in WNT signalling and ovarian hormonal regulation pathways, highlighted them as possible limitations of the current vitrification protocol.


Asunto(s)
Criopreservación , Folículo Ovárico , Ovario , Transcriptoma , Vitrificación , Animales , Femenino , Bovinos , Folículo Ovárico/crecimiento & desarrollo , Folículo Ovárico/metabolismo , Criopreservación/métodos , Transcriptoma/genética , Ovario/metabolismo , Preservación de la Fertilidad/métodos , Proliferación Celular/genética , Daño del ADN/genética
6.
J Proteome Res ; 22(4): 1071-1079, 2023 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-36108145

RESUMEN

In the quest for "missing proteins" (MPs), the proteins encoded by the human genome still lacking evidence of existence at the protein level, novel approaches are needed to detect this challenging group of proteins. The current count stands at 1,343 MPs, and it is likely that many of these proteins are expressed at low levels, in rare cell or tissue types, or the cells in which they are expressed may only represent a small minority of the tissue. Here, we used an integrated omics approach to identify and explore MPs in human ovaries. By taking advantage of publicly available transcriptomics and antibody-based proteomics data in the Human Protein Atlas (HPA), we selected 18 candidates for further immunohistochemical analysis using an exclusive collection of ovarian tissues from women and patients of reproductive age. The results were compared with data from single-cell mRNA sequencing, and seven proteins (CTXN1, MRO, RERGL, TTLL3, TRIM61, TRIM73, and ZNF793) could be validated at the single-cell type level with both methods. We present for the first time the cell type-specific spatial localization of 18 MPs in human ovarian follicles, thereby showcasing the utility of the HPA database as an important resource for identification of MPs suitable for exploration in specialized tissue samples. The results constitute a starting point for further quantitative and qualitative analysis of the human ovaries, and the novel data for the seven proteins that were validated with both methods should be considered as evidence of existence of these proteins in human ovary.


Asunto(s)
Ovario , Proteómica , Humanos , Femenino , Ovario/química , Proteómica/métodos , Proteínas/metabolismo , Anticuerpos/metabolismo , Perfilación de la Expresión Génica , Proteoma/genética , Proteoma/análisis
7.
Reprod Biomed Online ; 47(4): 103287, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37603956

RESUMEN

RESEARCH QUESTION: Are age-normalized reference values for human ovarian cortical follicular density adequate for tissue quality control in fertility preservation? DESIGN: Published quantitative data on the number of follicles in samples without known ovarian pathology were converted into cortical densities to create reference values. Next, a sample cohort of 126 girls (age 1-24 years, mean ± SD 11 ± 6) with cancer, severe haematological disease or Turner syndrome were used to calculate Z-scores for cortical follicular density based on the reference values. RESULTS: No difference was observed between Z-scores in samples from untreated patients (0.3 ± 3.5, n = 30) and patients treated with (0.5 ± 2.9, n = 48) and without (0.1 ± 1.3, n = 6) alkylating chemotherapy. Z-scores were not correlated with increasing cumulative exposure to cytostatics. Nevertheless, Z-scores in young treated patients (0-2 years -2.1 ± 3.1, n = 10, P = 0.04) were significantly lower than Z-scores in older treated patients (11-19 years, 2 ± 1.9, n = 15). Samples from patients with Turner syndrome differed significantly from samples from untreated patients (-5.2 ± 5.1, n = 24, P = 0.003), and a Z-score of -1.7 was identified as a cut-off showing good diagnostic value for identification of patients with Turner syndrome with reduced ovarian reserve. When this cut-off was applied to other patients, analysis showed that those with indications for reduced ovarian reserve (n = 15) were significantly younger (5.9 ± 4.2 versus 10.7 ± 5.9 years, P = 0.004) and, when untreated, more often had non-malignant haematologic diseases compared with those with normal ovarian reserve (n = 24, 100% versus 19%, P = 0.009). CONCLUSION: Z-scores allow the estimation of genetic- and treatment-related effects on follicular density in cortical tissue from young patients stored for fertility preservation. Understanding the quality of cryopreserved tissue facilitates its use during patient counselling. More research is needed regarding the cytostatic effects found in this study.


Asunto(s)
Síndrome de Turner , Femenino , Humanos , Anciano , Lactante , Preescolar , Niño , Adolescente , Adulto Joven , Adulto , Ovario , Estándares de Referencia , Control de Calidad , Antineoplásicos Alquilantes
8.
Environ Res ; 216(Pt 1): 114447, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36181890

RESUMEN

OBJECTIVE: Women of reproductive age are exposed to ubiquitous chemicals such as phthalates, parabens, and per- and polyfluoroalkyl substances (PFAS), which have potential endocrine disrupting properties and might affect fertility. Our objective was to investigate associations between potential endocrine-disrupting chemicals (EDCs) and female fertility in two cohorts of women attending fertility clinics. METHODS: In a total population of 333 women in Sweden and Estonia, we studied the associations between chemicals and female fertility, evaluating ovarian sensitivity index (OSI) as an indicator of ovarian response, as well as clinical pregnancy and live birth from fresh and frozen embryo transfers. We measured 59 chemicals in follicular fluid samples and detected 3 phthalate metabolites, di-2-ethylhexyl phthalate (DEHP) metabolites, 1 paraben, and 6 PFAS in >90% of the women. Associations were evaluated using multivariable-adjusted linear or logistic regression, categorizing EDCs into quartiles of their distributions, as well as with Bayesian Kernel Machine Regression. RESULTS: We observed statistically significant lower OSI at higher concentrations of the sum of DEHP metabolites in the Swedish cohort (Q4 vs Q1, ß = -0.21, 95% CI: -0.38, -0.05) and methylparaben in the Estonian cohort (Q3 vs Q1, ß = -0.22, 95% CI: -0.44, -0.01). Signals of potential associations were also observed at higher concentrations of PFUnDA in both the combined population (Q2 vs. Q1, ß = -0.16, 95% CI -0.31, -0.02) and the Estonian population (Q2 vs. Q1, ß = -0.27, 95% CI -0.45, -0.08), and for PFOA in the Estonian population (Q4 vs. Q1, ß = -0.31, 95% CI -0.61, -0.01). Associations of chemicals with clinical pregnancy and live birth presented wide confidence intervals. CONCLUSIONS: Within a large chemical mixture, we observed significant inverse associations levels of DEHP metabolites and methylparaben, and possibly PFUnDA and PFOA, with OSI, suggesting that these chemicals may contribute to altered ovarian function and infertility in women.


Asunto(s)
Dietilhexil Ftalato , Disruptores Endocrinos , Contaminantes Ambientales , Fluorocarburos , Ácidos Ftálicos , Embarazo , Femenino , Humanos , Estonia/epidemiología , Suecia/epidemiología , Teorema de Bayes , Reproducción
9.
Environ Res ; 208: 112626, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-34973191

RESUMEN

Persistent organic pollutants (POPs) are industrial chemicals resistant to degradation and have been shown to have adverse effects on reproductive health in wildlife and humans. Although regulations have reduced their levels, they are still ubiquitously present and pose a global concern. Here, we studied a cohort of 185 women aged 21-43 years with a median of 2 years of infertility who were seeking assisted reproductive technology (ART) treatment at the Carl von Linné Clinic in Uppsala, Sweden. We analyzed the levels of 9 organochlorine pesticides (OCPs), 10 polychlorinated biphenyls (PCBs), 3 polybrominated diphenyl ethers (PBDEs), and 8 perfluoroalkyl substances (PFASs) in the blood and follicular fluid (FF) samples collected during ovum pick-up. Impact of age on chemical transfer from blood to FF was analyzed. Associations of chemicals, both individually and as a mixture, to 10 ART endpoints were investigated using linear, logistic, and weighted quantile sum regression, adjusted for age, body mass index, parity, fatty fish intake and cause of infertility. Out of the 30 chemicals, 20 were detected in more than half of the blood samples and 15 in FF. Chemical transfer from blood to FF increased with age. Chemical groups in blood crossed the blood-follicle barrier at different rates: OCPs > PCBs > PFASs. Hexachlorobenzene, an OCP, was associated with lower anti-Müllerian hormone, clinical pregnancy, and live birth. PCBs and PFASs were associated with higher antral follicle count and ovarian response as measured by ovarian sensitivity index, but also with lower embryo quality. As a mixture, similar findings were seen for the sum of PCBs and PFASs. Our results suggest that age plays a role in the chemical transfer from blood to FF and that exposure to POPs significantly associates with ART outcomes. We strongly encourage further studies to elucidate the underlying mechanisms of reproductive effects of POPs in humans.


Asunto(s)
Contaminantes Ambientales , Hidrocarburos Clorados , Plaguicidas , Bifenilos Policlorados , Animales , Femenino , Líquido Folicular/química , Éteres Difenilos Halogenados , Humanos , Contaminantes Orgánicos Persistentes , Embarazo , Técnicas Reproductivas Asistidas
10.
J Assist Reprod Genet ; 39(4): 905-918, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35312936

RESUMEN

In mammalian species an optimal fertilization window during which successful fertilization occurs. In the majority of mammals estrus marks ovulation time and coincident with mating, thereby allowing the synchronized meeting in the fallopian tubes, between freshly ejaculated sperm and freshly ovulated oocytes. Conversely, women do not show natural visual signs of ovulation such that fertilization can occur hours later involving an aged oocyte and freshly ejaculated spermatozoa. During this time, the oocyte undergoes a rapid degradation known as "postovulatory aging" (POA). POA may become particularly important in the human-assisted reproductive technologies, as the fertilization of retrieved mature oocytes can be delayed due to increased laboratory workload or because of unforeseeable circumstances, like the delayed availability of semen samples. This paper is an updated review of the consequences of POA, either in vivo or in vitro, on oocyte quality with particular attention to modifications caused by POA on oocyte nuclear, cytoplasmic, genomic, and epigenetic maturation, and embryo development.


Asunto(s)
Senescencia Celular , Oocitos , Anciano , Envejecimiento/genética , Animales , Desarrollo Embrionario , Femenino , Humanos , Masculino , Mamíferos , Ovulación
11.
Int J Mol Sci ; 23(9)2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35563206

RESUMEN

Hydroxysteroid (17beta) dehydrogenase type 1 (HSD17B1) is an enzyme that converts estrone to estradiol, while adenomyosis is an estrogen-dependent disease with poorly understood pathophysiology. In the present study, we show that mice universally over-expressing human estrogen biosynthetic enzyme HSD17B1 (HSD17B1TG mice) present with adenomyosis phenotype, characterized by histological and molecular evaluation. The first adenomyotic changes with endometrial glands partially or fully infiltrated into the myometrium appeared at the age of 5.5 months in HSD17B1TG females and became more prominent with increasing age. Preceding the phenotype, increased myometrial smooth muscle actin positivity and increased amount of glandular myofibroblast cells were observed in HSD17B1TG uteri. This was accompanied by transcriptomic upregulation of inflammatory and estrogen signaling pathways. Further, the genes upregulated in the HSD17B1TG uterus were enriched with genes previously observed to be induced in the human adenomyotic uterus, including several genes of the NFKB pathway. A 6-week-long HSD17B1 inhibitor treatment reduced the occurrence of the adenomyotic changes by 5-fold, whereas no effect was observed in the vehicle-treated HSD17B1TG mice, suggesting that estrogen is the main upstream regulator of adenomyosis-induced uterine signaling pathways. HSD17B1 is considered as a promising drug target to inhibit estrogen-dependent growth of endometrial disorders. The present data indicate that HSD17B1 over-expression in TG mice results in adenomyotic changes reversed by HSD17B1 inhibitor treatment and HSD17B1 is, thus, a potential novel drug target for adenomyosis.


Asunto(s)
Adenomiosis , Adenomiosis/genética , Adenomiosis/patología , Animales , Estradiol Deshidrogenasas/genética , Estradiol Deshidrogenasas/metabolismo , Estrógenos/metabolismo , Femenino , Humanos , Hidroxiesteroides , Ratones , Ratones Transgénicos , Fenotipo
12.
Dev Dyn ; 249(12): 1500-1513, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32959928

RESUMEN

BACKGROUND: The transcription factor pleomorphic adenoma gene 1 (PLAG1) is required for male fertility. Mice deficient in PLAG1 exhibit decreased sperm motility and abnormal epididymal tubule elongation and coiling, indicating impaired sperm maturation during epididymal transit. However, the downstream transcriptomic profile of the Plag1 knockout (KO; Plag1-/- ) murine epididymis is currently unknown. RESULTS: In this study, the PLAG1-dependent epididymal transcriptome was characterised using RNA sequencing. Several genes important for the control of sperm maturation, motility, capacitation and the acrosome reaction were dysregulated in Plag1-/- mice. Surprisingly, several cell proliferation genes were upregulated, and Ki67 analysis indicated that cell proliferation is aberrantly upregulated in the cauda epididymis stroma of Plag1-/- mice. Gene ontology analysis showed an overall upregulation of genes encoding extracellular matrix components, and an overall downregulation of genes encoding metalloendopeptidases in the epididymides from Plag1-/- mice. CONCLUSION: Together, these results suggest a defect in the epididymal extracellular matrix in Plag1-/- mice. These results imply that in addition to maintaining epididymal integrity directly, PLAG1 may also regulate several genes involved in the regulation of sperm maturation and capacitation. Moreover, PLAG1 may also be involved in regulating tissue homeostasis and ensuring proper structure and maintenance of the extracellular matrix in the epididymis.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Epidídimo/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Maduración del Esperma/genética , Transcriptoma , Animales , Proteínas de Unión al ADN/genética , Proteínas de la Matriz Extracelular/genética , Perfilación de la Expresión Génica , Masculino , Ratones , Ratones Noqueados
13.
Environ Health ; 19(1): 67, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32539770

RESUMEN

BACKGROUND: We are exposed to several chemicals such as persistent organic pollutants (POPs) in our everyday lives. Prior evidence has suggested that POPs may have adverse effects on reproductive function by disrupting hormone synthesis and metabolism. While there is age-related decline of fertility, the use of hormonal combined oral contraceptives (COCs) and its association to return of fertility remains controversial. The goal of this study is to investigate the association between exposure to POPs, both individually and as a mixture, and fecundability measured as time-to-pregnancy (TTP) according to pre-pregnancy use of COCs and age. METHODS: Using the SELMA (Swedish Environmental Longitudinal Mother and Child, Allergy and Asthma) study, we have identified 818 pregnant women aged 18-43 years (mean 29 years) with data on how long they tried to get pregnant and what was their most recently used contraceptive method. These data were collected at enrollment to the study (median week 10 of pregnancy). Concentrations of 22 POPs and cotinine were analyzed in the blood samples collected at the same time as the questions on TTP and pre-pregnancy use of contraceptive. Analyses were done on the association between POPs exposure and TTP measured as continuous (months) and binary (infertile for those with TTP > 12 months). To study the chemicals individually, Cox regression and logistic regression were used to estimate fecundability ratios (FRs) and odds ratios (ORs), respectively. Weighted quantile sum (WQS) regression was used to investigate the chemicals as a mixture where chemicals of concern were identified above the 7.6% threshold of equal weights. To perform the subgroup analysis, we stratified the sample according to use of COCs as the most recent pre-pregnancy contraception method and age (< 29 years, and ≥ 29 years). The models were adjusted for parity, regularity of menses, maternal body mass index (BMI) and smoking status, and stratified as described above. RESULTS: Prior to stratification, none of the POPs were associated with fecundability while increased exposure to HCB, PCB 74 and 118 had higher odds of infertility. Upon stratification, POP exposure was significantly associated with longer TTP in women aged ≥29 years who did not use COC. Specifically, PCBs 156, 180, 183, and 187 were associated with reduced fecundability while PCBs 99, 153, 156, 180, 183, and 187 had higher odds of infertility. As a mixture, we identified the chemicals of concern for a longer TTP include PCBs 118, 156, 183, and 187. Moreover, chemicals of concern identified with increased odds of infertility were PCB 74, 156, 183, 187, and transnonachlor. CONCLUSION: Serum concentrations of selected POPs, both as individual chemicals and as a mixture, were significantly associated with lower fecundability and increased odds of infertility in women aged 29 years and above not using COC as their most recent pre-pregnancy contraceptive. Our findings suggest that pre-pregnancy use of oral contraceptive and age may modify the link between POPs and fecundability. The differences of specific chemicals in the individual analysis and as a mixture support the need to study combination effects of chemicals when evaluating reproductive outcomes.


Asunto(s)
Anticonceptivos Orales Combinados/administración & dosificación , Contaminantes Ambientales/análisis , Exposición Materna , Tiempo para Quedar Embarazada , Adulto , Factores de Edad , Estudios de Cohortes , Femenino , Humanos , Suecia , Adulto Joven
14.
Arch Toxicol ; 94(10): 3359-3379, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32638039

RESUMEN

Modern living challenges female reproductive health. We are witnessing a rise in reproductive disorders and drop in birth rates across the world. The reasons for these manifestations are multifaceted and most likely include continuous exposure to an ever-increasing number of chemicals. The cause-effect relationships between chemical exposure and female reproductive disorders, however, have proven problematic to determine. This has made it difficult to assess the risks chemical exposures pose to a woman's reproductive development and function. To address this challenge, this review uses the adverse outcome pathway (AOP) concept to summarize current knowledge about how chemical exposure can affect female reproductive health. We have a special focus on effects on the ovaries, since they are essential for lifelong reproductive health in women, being the source of both oocytes and several reproductive hormones, including sex steroids. The AOP framework is widely accepted as a new tool for toxicological safety assessment that enables better use of mechanistic knowledge for regulatory purposes. AOPs equip assessors and regulators with a pragmatic network of linear cause-effect relationships, enabling the use of a wider range of test method data in chemical risk assessment and regulation. Based on current knowledge, we propose ten putative AOPs relevant for female reproductive disorders that can be further elaborated and potentially be included in the AOPwiki. This effort is an important step towards better safeguarding the reproductive health of all girls and women.


Asunto(s)
Rutas de Resultados Adversos , Seguridad Química , Exposición Materna , Ovario/efectos de los fármacos , Salud Reproductiva , Animales , Enfermedades del Sistema Endocrino/inducido químicamente , Femenino , Humanos , Ratones , Enfermedades del Ovario/inducido químicamente , Ovario/fisiopatología , Embarazo , Medición de Riesgo , Pruebas de Toxicidad
15.
Int J Mol Sci ; 21(9)2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32370092

RESUMEN

Currently available test methods are not well-suited for the identification of chemicals that disturb hormonal processes involved in female reproductive development and function. This renders women's reproductive health at increasing risk globally, which, coupled with increasing incidence rates of reproductive disorders, is of great concern. A woman's reproductive health is largely established during embryonic and fetal development and subsequently matures during puberty. The endocrine system influences development, maturation, and function of the female reproductive system, thereby making appropriate hormone levels imperative for correct functioning of reproductive processes. It is concerning that the effects of human-made chemicals on the endocrine system and female reproductive health are poorly addressed in regulatory chemical safety assessment, partly because adequate test methods are lacking. Our EU-funded project FREIA aims to address this need by increasing understanding of how endocrine disrupting chemicals (EDCs) can impact female reproductive health. We will use this information to provide better test methods that enable fit-for-purpose chemical regulation and then share our knowledge, promote a sustainable society, and improve the reproductive health of women globally.


Asunto(s)
Disruptores Endocrinos/farmacología , Reproducción/efectos de los fármacos , Salud Reproductiva , Animales , Sistema Endocrino/efectos de los fármacos , Exposición a Riesgos Ambientales , Contaminantes Ambientales/efectos adversos , Femenino , Humanos , Pubertad/efectos de los fármacos , Medición de Riesgo , Factores de Riesgo
16.
Hum Reprod ; 34(11): 2297-2310, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31743397

RESUMEN

STUDY QUESTION: Does the X chromosome inactivation (XCI) of Klinefelter syndrome (KS)-derived human induced pluripotent stem cells (hiPSCs) correspond to female human pluripotent stem cells (hPSCs) and reflect the KS genotype? SUMMARY ANSWER: Our results demonstrate for the first time that KS-derived hiPSCs show similar XCI behavior to female hPSCs in culture and show biological relevance to KS genotype-related clinical features. WHAT IS KNOWN ALREADY: So far, assessment of XCI of KS-derived hiPSCs was based on H3K27me3 staining and X-inactive specific transcript gene expression disregarding the at least three XCI states (XaXi with XIST coating, XaXi lacking XIST coating, and XaXe (partially eroded XCI)) that female hPSCs display in culture. STUDY DESIGN, SIZE, DURATION: The study used hiPSC lines generated from two azoospermic patients with KS and included two healthy male (HM) and one healthy female donor. PARTICIPANTS/MATERIALS, SETTING, METHODS: In this study, we derived hiPSCs by reprograming fibroblasts with episomal plasmids and applying laminin 521 as culture substrate. hiPSCs were characterized by karyotyping, immunocytochemistry, immunohistochemistry, quantitative PCR, teratoma formation, and embryoid body differentiation. XCI and KS hiPSC relevance were assessed by whole genome transcriptomics analysis and immunocytochemistry plus FISH of KS, HM and female fibroblast, and their hiPSC derivatives. MAIN RESULTS AND THE ROLE OF CHANCE: Applying whole genome transcriptomics analysis, we could identify differentially expressed genes (DEGs) between KS and HM donors with enrichment in gene ontology terms associated with fertility, cardiovascular development, ossification, and brain development, all associated with KS genotype-related clinical features. Furthermore, XCI analysis based on transcriptomics data, RNA FISH, and H3K27me3 staining revealed variable XCI states of KS hiPSCs similar to female hiPSCs, showing either normal (XaXi) or eroded (XaXe) XCI. KS hiPSCs with normal XCI showed nevertheless upregulated X-linked genes involved in nervous system development as well as synaptic transmission, supporting the potential use of KS-derived hiPSCs as an in vitro model for KS. LIMITATIONS, REASONS FOR CAUTION: Detailed clinical information for patients included in this study was not available. Although a correlation between DEGs and the KS genotype could be observed, the biological relevance of these cells has to be confirmed with further experiments. In addition, karyotype analysis for two hiPSC lines was performed at passage 12 but not repeated at a later passage. Nevertheless, since all XCI experiments for those lines were performed between passage 11 and 15 the authors expect no karyotypic changes for those experiments. WIDER IMPLICATIONS OF THE FINDINGS: As KS patients have variable clinical phenotypes that are influenced by the grade of aneuploidy, mosaicism, origin of the X chromosome, and XCI 'escapee' genes, which vary not only among individuals but also among different tissues within the same individual, differentiated KS hiPSCs could be used for a better understanding of KS pathogenesis. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by grants from the Knut and Alice Wallenberg Foundation (2016.0121 and 2015.0096), Ming Wai Lau Centre for Reparative Medicine (2-343/2016), Ragnar Söderberg Foundation (M67/13), Swedish Research Council (2013-32485-100360-69), the Centre for Innovative Medicine (2-388/2016-40), Kronprinsessan Lovisas Förening För Barnasjukvård/Stiftelsen Axel Tielmans Minnesfond, Samariten Foundation, Jonasson Center at the Royal Institute of Technology, Sweden, and Initial Training Network Marie Curie Program 'Growsperm' (EU-FP7-PEOPLE-2013-ITN 603568). The authors declare no conflicts of interest.


Asunto(s)
Azoospermia/genética , Cromosomas Humanos X , Síndrome de Klinefelter/genética , Células Madre Pluripotentes/citología , Inactivación del Cromosoma X , Adulto , Diferenciación Celular , Femenino , Fibroblastos/metabolismo , Genotipo , Histonas/metabolismo , Humanos , Masculino , Fenotipo , Factores Sexuales , Teratoma/metabolismo , Transcriptoma
17.
Hum Reprod ; 34(9): 1674-1685, 2019 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-31411325

RESUMEN

STUDY QUESTION: Does first-line chemotherapy affect the quality of ovarian pre-antral follicles and stromal tissue in a population of young patients? SUMMARY ANSWER: Exposure to first-line chemotherapy significantly impacts follicle viability, size of residual intact follicles, steroid secretion in culture and quality of the stromal compartment. WHAT IS KNOWN ALREADY: First-line chemotherapy is considered to have a low gonadotoxic potential, and as such, does not represent an indication for fertility preservation. Studies investigating the effects of chemotherapy on the quality of ovarian tissue stored for fertility preservation in young patients are limited and the results sometimes contradictory. STUDY DESIGN, SIZE, DURATION: We conducted a retrospective cohort study including young patients referred to three centers (Helsinki, Oslo and Tampere) to perform ovarian tissue cryopreservation for fertility preservation between 2003 and 2018. PARTICIPANTS/MATERIALS, SETTING, METHODS: A total of 43 patients (age 1-24 years) were included in the study. A total of 25 were exposed to first-line chemotherapy before cryopreservation, whereas 18 patients were not. Density and size of follicles divided by developmental stages, prevalence of atretic follicles, health of the stromal compartment and functionality of the tissue in culture were evaluated and related to age and chemotherapy exposure. Activation of dormant follicles and DNA damage were also assessed. MAIN RESULTS AND THE ROLE OF CHANCE: Patients exposed to first-line chemotherapy showed a significantly higher density of atretic primordial and intermediary follicles than untreated patients. The intact primordial and intermediary follicles were significantly smaller in size in patients exposed to chemotherapy. Production of steroids in culture was also significantly impaired and a higher content of collagen and DNA damage was observed in the stromal compartment of treated patients. Collectively, these observations may indicate reduced quality and developmental capacity of follicles as a consequence of first-line chemotherapy exposure. Neither increased activation of dormant follicles nor elevated levels of DNA damage in oocyte nuclei were found in patients exposed to chemotherapy. LIMITATIONS, REASONS FOR CAUTION: The two groups were not homogeneous in terms of age and the patients were exposed to different treatments, which did not allow us to distinguish the effect of specific agents. The limited material availability did not allow us to perform all the analyses on the entire set of patients. WIDER IMPLICATION OF THE FINDINGS: This study provides for the first time a comprehensive analysis of the effects of first-line chemotherapy on the health, density and functionality of follicles categorized according to the developmental stage in patients under 24 years of age. When exposed to these treatments, patients were considered at low/medium risk of infertility. Our data suggest a profound impact of these relatively safe therapies on ovarian health and encourages further exploration of this effect in follow-up studies in order to optimize fertility preservation for young cancer patients. STUDY FUNDING/COMPETING INTEREST(S): This study was funded by the Swedish Childhood Cancer Foundation, the Finnish Cancer Society, the Finnish Pediatric Research Foundation, the Väre Foundation for Pediatric Cancer Research, The Swedish Research Council, the Stockholm County Council (ALF project) and Karolinska Institutet. The authors have no conflict of interest to declare.


Asunto(s)
Criopreservación/métodos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Preservación de la Fertilidad/métodos , Neoplasias/tratamiento farmacológico , Folículo Ovárico/efectos de los fármacos , Folículo Ovárico/patología , Adolescente , Niño , Preescolar , Daño del ADN/efectos de los fármacos , Femenino , Humanos , Lactante , Oocitos/efectos de los fármacos , Estudios Retrospectivos , Células del Estroma/patología , Técnicas de Cultivo de Tejidos , Adulto Joven
19.
Toxicol Appl Pharmacol ; 338: 73-82, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29146461

RESUMEN

Infertility is a global health problem with an estimated incidence of 15%. Exposure to chemicals is a potential causal factor, and there is a lack of studies examining the effects on female germ cells. Here, we have studied the impact of different aryl hydrocarbon receptor (AHR) modulators on human ovarian follicles using a human ovarian tissue culture model. Expression of AHR was analyzed in tissue samples, and effects of the selected ligands resveratrol (RSVL), 6-formylindolo(3,2-b)carbazole (FICZ), and alpha-naphthoflavone (aNF) on AHR transactivation studied in a granulosa cell tumor line. Cortical human ovarian tissue containing preantral follicles was exposed to the ligands or vehicle (dimethylsulfoxide, DMSO) for seven days in vitro. Follicle growth was assessed by counting and measuring follicles from serial tissue sections, cell death quantified using in situ Terminal deoxynucleotidyl transferase dUTP Nick-End Labeling (TUNEL) assay, and steroid hormone production measured using a newly developed ultra-performance liquid chromatography method. AHR was expressed in all donated ovarian tissue samples. FICZ induced AHR transactivation in the granulosa cell line while aNF antagonised it. Compared to DMSO control, FICZ had no effect on follicles in culture, RSVL increased the proportion of growing follicles, and aNF increased cell death, disrupted growth of secondary follicles, increased testosterone, and reduced estradiol levels. We conclude that RSVL supports and aNF disrupts growth of human ovarian follicles in culture. We further conclude that the human ovarian tissue culture model is suitable for studying effects of chemicals on follicular biology.


Asunto(s)
Benzoflavonas/farmacología , Folículo Ovárico/efectos de los fármacos , Estilbenos/farmacología , Adulto , Carbazoles/farmacología , Muerte Celular/efectos de los fármacos , Femenino , Humanos , Etiquetado Corte-Fin in Situ , Folículo Ovárico/crecimiento & desarrollo , Receptores de Hidrocarburo de Aril/efectos de los fármacos , Receptores de Hidrocarburo de Aril/genética , Resveratrol , Técnicas de Cultivo de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA