Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Small ; 17(12): e2005527, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33599055

RESUMEN

Titanium and its alloys are frequently used to replace structural components of the human body due to their high mechanical strength, low stiffness, and biocompatibility. In particular, the use of porous materials has improved implant stabilization and the promotion of bone. However, it remains unclear which material properties and geometrical cues are optimal for a proper osteoinduction and osseointegration. To that end, transparent tubular microscaffolds are fabricated, mimicking the typical pores of structural implants, with the aim of studying early bone formation and cell-material interactions at the single cell level. Here, a ß-stabilized alloy Ti-45Nb (wt%) is used for the microscaffold's fabrication due to its elastic modulus close to that of natural bone. Human mesenchymal stem cell migration, adhesion, and osteogenic differentiation is thus investigated, paying particular attention to the CaP formation and cell-body crystallization, both analyzed via optical and electron microscopy. It is demonstrated that the developed platform is suited for the long-term study of living single cells in an appropriate microenvironment, obtaining in the process deeper insights on early bone formation and providing cues to improve the stability and biocompatibility of current structural implants.


Asunto(s)
Materiales Biocompatibles , Osteogénesis , Aleaciones , Humanos , Ensayo de Materiales , Óxidos , Titanio
2.
J Am Chem Soc ; 141(23): 9197-9201, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31145608

RESUMEN

Identifying the intrinsic electrocatalytic activity of nanomaterials is challenging, as their characterization usually requires additives and binders whose contributions are difficult to dissect. Herein, we use nano impact electrochemistry as an additive-free method to overcome this problem. Due to the efficient mass transport at individual catalyst nanoparticles, high current densities can be realized. High-resolution bright-field transmission electron microscopy and selected area diffraction studies of the catalyst particles before and after the experiments provide valuable insights in the transformation of the nanomaterials during harsh oxygen evolution reaction (OER) conditions. We demonstrate this for 4 nm sized CoFe2O4 spinel nanoparticles. It is revealed that these particles retain their size and crystal structure even after OER at current densities as high as several kA·m-2. The steady-state current scales with the particle size distribution and is limited by the diffusion of produced oxygen away from the particle. This versatilely applicable method provides new insights into intrinsic nanocatalyst activities, which is key to the efficient development of improved and precious metal-free catalysts for renewable energy technologies.

3.
Nanotechnology ; 30(2): 025701, 2019 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-30378567

RESUMEN

Electron beam induced current (EBIC) measurements were carried out in situ in the scanning electron microscope on free-standing GaAs/Fe core-shell nanowires (NWs), isolated from the GaAs substrate via a layer of aluminum oxide. The excess current as a function of the electron beam energy, position on the NW, and scan direction were collected, together with energy dispersive x-ray spectroscopy. A model that included the effects of beam energy and Fe thickness predicted an average collection efficiency of 60%. Small spatial oscillations in the EBIC current were observed, that correlated with the average Fe grain size (30 nm). These oscillations likely originated from lateral variations in the interfacial oxide thickness, affecting the resistance, barrier potentials, and density of minority carrier recombination traps.

5.
Phys Chem Chem Phys ; 16(7): 3200-8, 2014 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-24407350

RESUMEN

Citrate-capped gold nanoparticles (AuNPs) of 5 nm in diameter are synthesized via wet chemistry and deposited on a glassy carbon electrode through electrophoresis. The kinetics of the oxygen reduction reaction (ORR) on the modified electrode is determined quantitatively in oxygen-saturated 0.5 M sulphuric acid solution by modelling the cathode as an array of interactive nanoelectrodes. Quantitative analysis of the cyclic voltammetry shows that no apparent ORR electrocatalysis takes place, the kinetics on AuNPs being effectively the same as on bulk gold. Contrasting with the above, a strong ORR catalysis is found when Pb(2+) is added to the oxygen saturated solution or when the modified electrode is cycled in lead alkaline solution such that lead dioxide is repeatedly electrodeposited and stripped off on the nanoparticles. In both cases, the underpotential deposition of lead on the gold nanoparticles is found to be related to the catalysis.

6.
Chemphyschem ; 14(17): 3895-7, 2013 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-24166936

RESUMEN

Quantitative analytical detection and sizing of silver nanoparticles is achieved by applying the new electrochemical method nanoparticle coulometry. For the first time, tri-sodium citrate is used as both an electrolyte and a nanoparticle stabilizing agent, allowing the individual particles to be addressed.

7.
ChemistryOpen ; 9(11): 1084, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33163324

RESUMEN

Invited for this month's cover is the group of Michael Ruck and Thomas Doert at the Technische Universität Dresden (Germany). The cover picture shows the transformation of a Bi-Ni core-shell particle into a homogenous intermetallic BiNi particle. To understand the mechanism for the BiNi formation in the polyol process, various methods such as X-ray and electron diffraction, HR-TEM, mass spectrometry and FT-IR spectroscopy were employed. In a microwave-assisted one-pot synthesis at first Bi-particles emerge by reduction of a Bi-salt. The reduction of the Ni-salt most likely occurs on the surface of these particles, followed by a complete encasement of the Bi-core (blue) with a shell of Ni-particles (green). As the reaction continues, the Ni-atoms diffuse into the Bi-core until the homogeneous BiNi particle is attained. Read the full text of their Full Paper at 10.1002/open.202000236.

8.
ChemistryOpen ; 9(11): 1085-1094, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33163325

RESUMEN

Typically, intermetallic phases are obtained in solid-state reactions or crystallization from melts, which are highly energy and time consuming. The polyol process takes advantage of low temperatures and short reaction times using easily obtainable starting materials. The formation mechanism of these intermetallic particles has received little attention so far, even though a deeper understanding should allow for better synthesis planning. In this study, we therefore investigated the formation of BiNi particles in ethylene glycol in a microwave-assisted polyol process mechanistically. The coordination behavior in solution was analyzed using HPLC-MS and UV-Vis. Tracking the reaction with PXRD measurements, FT-IR spectroscopy and HR-TEM revealed a successive reduction of Bi3+ and Ni2+, leading to novel spherical core-shell structure in a first reaction step. Bismuth particles are encased in a matrix of nickel nanoparticles of 2 nm to 6 nm in diameter and oxidation products of ethylene glycol. Step-wise diffusion of nickel into the bismuth particle intermediately results in the bismuth-rich compound Bi3Ni, which consecutively transforms into the BiNi phase as the reaction progresses. The impacts of the anion type, temperature and pH value were also investigated.

9.
Beilstein J Nanotechnol ; 9: 1024-1034, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29719754

RESUMEN

In the present work, we demonstrate different synthesis procedures for filling carbon nanotubes (CNTs) with equimolar binary nanoparticles of the type Fe-Co. The CNTs act as templates for the encapsulation of magnetic nanoparticles and provide a protective shield against oxidation as well as prevent nanoparticle agglomeration. By variation of the reaction parameters, we were able to tailor the sample purity, degree of filling, the composition and size of the filling particles, and therefore, the magnetic properties. The samples were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), superconducting quantum interference device (SQUID) and thermogravimetric analysis (TGA). The Fe-Co-filled CNTs show significant enhancement in the coercive field as compared to the corresponding bulk material, which make them excellent candidates for several applications such as magnetic storage devices.

10.
Nanomaterials (Basel) ; 8(8)2018 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-30060566

RESUMEN

In the present work, different synthesis procedures have been demonstrated to fill carbon nanotubes (CNTs) with Fe1-xNix alloy nanoparticles (x = 0.33, 0.5). CNTs act as templates for the encapsulation of magnetic nanoparticles, and provide a protective shield against oxidation as well as prevent nanoparticles agglomeration. By variation of the reaction parameters, the purity of the samples, degree of filling, the composition and size of filling nanoparticles have been tailored and therefore the magnetic properties. The samples were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Bright-field (BF) TEM tomography, X-ray powder diffraction, superconducting quantum interference device (SQUID) and thermogravimetric analysis (TGA). The Fe1-xNix-filled CNTs show a huge enhancement in the coercive fields compared to the corresponding bulk materials, which make them excellent candidates for several applications such as magnetic storage devices.

11.
Mater Sci Eng C Mater Biol Appl ; 70(Pt 1): 258-263, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27770889

RESUMEN

In this work, we report for the first time on the use of melt spun glass-forming alloys - Ti75Zr10Si15 (TZS) and Ti60Zr10Si15Nb15 (TZSN) - as substrates for the growth of anodic oxide nanotube layers. Upon their anodization in ethylene glycol based electrolytes, highly ordered nanotube layers were achieved. In comparison to TiO2 nanotube layers grown on Ti foils, under the same conditions for reference, smaller diameter nanotubes (~116nm for TZS and ~90nm for TZSN) and shorter nanotubes (~11.5µm and ~6.5µm for TZS and TZSN, respectively) were obtained for both amorphous alloys. Furthermore, TEM and STEM studies, coupled with EDX analysis, revealed a double-wall structure of the as-grown amorphous oxide nanotubes with Ti species being enriched in the inner wall, and Si species in the outer wall, whereby Zr and Nb species were homogeneously distributed.


Asunto(s)
Aleaciones/química , Vidrio/química , Nanotubos/química , Óxidos/química , Silicio/química , Titanio/química , Circonio/química , Electrodos , Nanotubos/ultraestructura , Tamaño de la Partícula , Espectrometría por Rayos X
12.
Nanoscale ; 9(16): 5315-5322, 2017 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-28398446

RESUMEN

Aligned, individual iron square cuboid nanoparticles have been achieved by taking advantage of epitaxial, three-dimensional-island growth on GaAs(001) during electrodeposition at low deposition rates. The nanoparticles exhibit lateral dimensions between 10 and 80 nm and heights below 40 nm. Surface {100} facets predominate with a thin crystalline oxide shell that protects the nanoparticles during prolonged storage in air. The single crystallinity of the iron in combination with structural alignment leads to an in-plane magnetic anisotropy. These immobilized, oriented, and stable nanoparticles are promising for applications in nanoelectronic, sensor, and data storage technologies, as well as for the detailed analysis of the effect of shape and size on magnetism at the nanoscale.

13.
Nanoscale ; 8(28): 13552-7, 2016 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-27362294

RESUMEN

We systematically investigated the role of topological surface states on thermoelectric transport by varying the surface-to-volume ratio (s/v) of Bi2Se3 nanowires. The thermoelectric coefficients of Bi2Se3 nanowires were significantly influenced by the topological surface states with increasing the s/v. The Seebeck coefficient of Bi2Se3 nanowires decreased with increasing the s/v, while the electrical conductivity increased with increasing the s/v. This implies that the influence of metallic surface states become dominant in thermoelectric transport in thin nanowires, and the s/v is a key parameter which determines the total thermoelectric properties. Our measurements were corroborated by using a two-channel Boltzmann transport model.

14.
ACS Nano ; 10(7): 7180-8, 2016 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-27351276

RESUMEN

Locally induced, magnetic order on the surface of a topological insulator nanowire could enable room-temperature topological quantum devices. Here we report on the realization of selective magnetic control over topological surface states on a single facet of a rectangular Bi2Te3 nanowire via a magnetic insulating Fe3O4 substrate. Low-temperature magnetotransport studies provide evidence for local time-reversal symmetry breaking and for enhanced gapping of the interfacial 1D energy spectrum by perpendicular magnetic-field components, leaving the remaining nanowire facets unaffected. Our results open up great opportunities for development of dissipation-less electronics and spintronics.

15.
J Mater Chem B ; 3(12): 2522-2529, 2015 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-32262127

RESUMEN

Graphene oxide (GO) has attracted great interest due to its extraordinary potential for biomedical application. Although it is clear that the naturally occurring morphology of biological structures is crucial to their precise interactions and correct functioning, the geometrical aspects of nanoparticles are often ignored in the design of nanoparticles for biological applications. A few in vitro and in vivo studies have evaluated the cytotoxicity and biodistribution of GO, however very little is known about the influence of flake size and cytotoxicity. Herein, we aim at presenting an initial cytotoxicity evaluation of different nano-sized GO flakes for two different cell lines (HeLa (Kyoto) and macrophage (J7742)) when they are exposed to samples containing different sized nanographene oxide (NGO) flakes (mean diameter of 89 and 277 nm). The obtained data suggests that the larger NGO flakes reduce cell viability as compared to smaller flakes. In addition, the viability reduction correlates with the time and the concentration of the NGO nanoparticles to which the cells are exposed. Uptake studies were also conducted and the data suggests that both cell lines internalize the GO nanoparticles during the incubation periods studied.

16.
Nanoscale ; 6(19): 11024-30, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25137528

RESUMEN

The electron transfer kinetics associated with both the reduction of oxygen and of protons to form hydrogen at gold nanoparticles are shown to display strong retardation when studied at citrate capped ultra small (2 nm) gold nanoparticles. Negative nanocatalysis in the hydrogen evolution reaction (HER) is reported for the first time.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA