Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Annu Rev Immunol ; 42(1): 347-373, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38941603

RESUMEN

Plasmacytoid dendritic cells (pDCs) represent a unique cell type within the innate immune system. Their defining property is the recognition of pathogen-derived nucleic acids through endosomal Toll-like receptors and the ensuing production of type I interferon and other soluble mediators, which orchestrate innate and adaptive responses. We review several aspects of pDC biology that have recently come to the fore. We discuss emerging questions regarding the lineage affiliation and origin of pDCs and argue that these cells constitute an integral part of the dendritic cell lineage. We emphasize the specific function of pDCs as innate sentinels of virus infection, particularly their recognition of and distinct response to virus-infected cells. This essential evolutionary role of pDCs has been particularly important for the control of coronaviruses, as demonstrated by the recent COVID-19 pandemic. Finally, we highlight the key contribution of pDCs to systemic lupus erythematosus, in which therapeutic targeting of pDCs is currently underway.


Asunto(s)
COVID-19 , Células Dendríticas , Inmunidad Innata , Lupus Eritematoso Sistémico , SARS-CoV-2 , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Humanos , COVID-19/inmunología , Animales , SARS-CoV-2/inmunología , SARS-CoV-2/fisiología , Lupus Eritematoso Sistémico/inmunología , Receptores Toll-Like/metabolismo , Diferenciación Celular , Linaje de la Célula
2.
Nat Immunol ; 24(8): 1265-1280, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37414907

RESUMEN

High-dimensional approaches have revealed heterogeneity amongst dendritic cells (DCs), including a population of transitional DCs (tDCs) in mice and humans. However, the origin and relationship of tDCs to other DC subsets has been unclear. Here we show that tDCs are distinct from other well-characterized DCs and conventional DC precursors (pre-cDCs). We demonstrate that tDCs originate from bone marrow progenitors shared with plasmacytoid DCs (pDCs). In the periphery, tDCs contribute to the pool of ESAM+ type 2 DCs (DC2s), and these DC2s have pDC-related developmental features. Different from pre-cDCs, tDCs have less turnover, capture antigen, respond to stimuli and activate antigen-specific naïve T cells, all characteristics of differentiated DCs. Different from pDCs, viral sensing by tDCs results in IL-1ß secretion and fatal immune pathology in a murine coronavirus model. Our findings suggest that tDCs are a distinct pDC-related subset with a DC2 differentiation potential and unique proinflammatory function during viral infections.


Asunto(s)
Médula Ósea , Células Dendríticas , Animales , Ratones , Antivirales , Médula Ósea/inmunología , Diferenciación Celular , Células Dendríticas/clasificación , Células Dendríticas/inmunología
3.
Cell Immunol ; 371: 104468, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34968772

RESUMEN

Dendritic cells (DCs) play central role in innate as well as adaptive immune responses regulated by diverse DC subtypes that vary in terms of surface markers, transcriptional profile and functional responses. Generation of DC diversity from progenitor stage is tightly regulated by complex molecular inter-play between transcription factors. We earlier demonstrated that Batf3 and Id2 expression have a synergistic effect on the Irf8 directed classical cDC1 development. In present study, Bi-molecular fluorescence complementation assay suggested that IRF8 interacts with BATF3, and ID2 may aid cDC1 development independently. Genome wide recruitment analysis of IRF8 and BATF3 from different DC subtypes led to identification of the overlapping regions of occupancy by these two transcription factors. Further analysis of overlapping peaks of IRF8 and BATF3 occupancy in promoter region within the cDC1 subtype specific transcriptional pattern identified a metabolically important Pfkfb3 gene. Among various immune cell types; splenic cDC1 subtype displayed enhanced expression of Pfkfb3. Analysis of Irf8-/-, Irf8R294C and Batf3DCKO DC confirmed direct regulation of Pfkfb3 enhanced expression specifically in cDC1 subtype. Further we show that inhibition of PFKFB3 enzymatic activity by a chemical agent PFK15 led to reduction in cDC1 subtype in both in vitro FLDC cultures as well as in vivo mouse spleens. Together, our study identified the direct regulation of cDC1 specific enhanced expression of Pfkfb3 in glycolysis and cDC1 biology.


Asunto(s)
Células Dendríticas/inmunología , Factores Reguladores del Interferón/metabolismo , Fosfofructoquinasa-2/biosíntesis , Proteínas Represoras/metabolismo , Animales , Línea Celular , Femenino , Regulación de la Expresión Génica/genética , Glucólisis/genética , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Fosfofructoquinasa-2/antagonistas & inhibidores , Fosfofructoquinasa-2/genética , Regiones Promotoras Genéticas/genética , Piridinas/farmacología , Quinolinas/farmacología
4.
Front Immunol ; 12: 758190, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34867997

RESUMEN

Plasmacytoid dendritic cells (pDCs) are the key producers of type I interferons (IFNs), thus playing a central role in initiating antiviral immune response. Besides robust type I IFN production, pDCs also act as antigen presenting cells post immunogenic stimulation. Transcription factor Irf8 is indispensable for the development of both pDC and cDC1 subset. However, the mechanism underlying the differential regulation by IRF8 in cDC1- and pDC-specific genomic architecture of developmental pathways still remains to be fully elucidated. Previous studies indicated that the Irf8R294C mutation specifically abrogates development of cDC1 without affecting that of pDC. In the present study using RNA-seq based approach, we have found that though the point mutation Irf8R294C did not affect pDC development, it led to defective type I IFN production, thus resulting in inefficient antiviral response. This observation unraveled the distinctive roles of IRF8 in these two subpopulations-regulating the development of cDC1 whereas modulating the functionality of pDCs without affecting development. We have reported here that Irf8R294C mutation also caused defect in production of ISGs as well as defective upregulation of costimulatory molecules in pDCs in response to NDV infection (or CpG stimulation). Through in vivo studies, we demonstrated that abrogation of type I IFN production was concomitant with reduced upregulation of costimulatory molecules in pDCs and increased NDV burden in IRF8R294C mice in comparison with wild type, indicating inefficient viral clearance. Further, we have also shown that Irf8R294C mutation abolished the activation of type I IFN promoter by IRF8, justifying the low level of type I IFN production. Taken together, our study signifies that the single point mutation in Irf8, Irf8R294C severely compromised type I IFN-mediated immune response by murine pDCs, thereby causing impairment in antiviral immunity.


Asunto(s)
Células Dendríticas/inmunología , Factores Reguladores del Interferón/genética , Interferón Tipo I/inmunología , Mutación Missense , Enfermedad de Newcastle/inmunología , Mutación Puntual , Animales , Neoplasias Óseas/patología , Línea Celular Tumoral , Islas de CpG/inmunología , Células Dendríticas/metabolismo , Femenino , Regulación de la Expresión Génica , Células HEK293 , Humanos , Inmunidad Innata , Factores Reguladores del Interferón/inmunología , Interferón Tipo I/biosíntesis , Masculino , Ratones , Ratones Endogámicos C57BL , Virus de la Enfermedad de Newcastle , Osteosarcoma/patología , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA