Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cancer Metastasis Rev ; 43(1): 175-195, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38233727

RESUMEN

T cells, a key component of cancer immunotherapy, undergo a variety of histone modifications and DNA methylation changes since their bone marrow progenitor stages before developing into CD8+ and CD4+ T cells. These T cell types can be categorized into distinct subtypes based on their functionality and properties, such as cytotoxic T cells (Tc), helper T cells (Th), and regulatory T cells (Treg) as subtypes for CD8+ and CD4+ T cells. Among these, the CD4+ CD25+ Tregs potentially contribute to cancer development and progression by lowering T effector (Teff) cell activity under the influence of the tumor microenvironment (TME). This contributes to the development of therapeutic resistance in patients with cancer. Subsequently, these individuals become resistant to monoclonal antibody therapy as well as clinically established immunotherapies. In this review, we delineate the different epigenetic mechanisms in cancer immune response and its involvement in therapeutic resistance. Furthermore, the possibility of epi-immunotherapeutic methods based on histone deacetylase inhibitors and histone methyltransferase inhibitors are under investigation. In this review we highlight EZH2 as the principal driver of cancer cell immunoediting and an immune escape regulator. We have addressed in detail how understanding T cell epigenetic regulation might bring unique inventive strategies to overcome drug resistance and increase the efficacy of cancer immunotherapy.


Asunto(s)
Epigénesis Genética , Neoplasias , Humanos , Inmunoterapia , Neoplasias/genética , Neoplasias/terapia , Linfocitos T Reguladores , Metilación de ADN , Microambiente Tumoral/genética
2.
Biochemistry ; 63(12): 1534-1542, 2024 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-38804064

RESUMEN

Zinc Finger MYND (Myeloid, Nervy, and DEAF-1) type containing 8 (ZMYND8) is a crucial epigenetic regulator that plays a multifaceted role in governing a spectrum of vital cellular processes, encompassing proliferation, apoptosis, migration, tumor suppression, and differentiation. It has emerged as a key player in neuronal differentiation by orchestrating the expression of neuronal lineage-committed genes. The present study uncovers the role of ZMYND8 in regulating the Sonic Hedgehog (SHH) signaling axis, which is crucial for neuronal differentiation. Genetic deletion of ZMYND8 leads to a significant reduction in SHH pathway genes, GLI1, and PTCH1 expression during all-trans-retinoic acid (ATRA)-induced differentiation. ZMYND8 and RNA pol II S5P are found to co-occupy the GLI1 and PTCH1 gene promoters, positively impacting their gene transcription upon ATRA treatment. Interestingly, ZMYND8 is found to counteract the inhibitory effects of Cyclopamine that block the upstream SHH pathway protein SMO, resulting in enhanced neurite formation in neuroblastoma cells following their treatment with ATRA. These results indicate that ZMYND8 is an epigenetic regulator of the SHH signaling pathway and has tremendous therapeutic potential in ATRA-mediated differentiation of neuroblastoma.


Asunto(s)
Diferenciación Celular , Proteínas Hedgehog , Neuroblastoma , Transducción de Señal , Proteínas Supresoras de Tumor , Humanos , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Neuroblastoma/genética , Neuroblastoma/patología , Receptor Patched-1/metabolismo , Receptor Patched-1/genética , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Tretinoina/farmacología
3.
Nucleic Acids Res ; 50(11): 6116-6136, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35670677

RESUMEN

Human Positive Coactivator 4 (PC4) is a multifaceted chromatin protein involved in diverse cellular processes including genome organization, transcription regulation, replication, DNA repair and autophagy. PC4 exists as a phospho-protein in cells which impinges on its acetylation by p300 and thereby affects its transcriptional co-activator functions via double-stranded DNA binding. Despite the inhibitory effects, the abundance of phosphorylated PC4 in cells intrigued us to investigate its role in chromatin functions in a basal state of the cell. We found that casein kinase-II (CKII)-mediated phosphorylation of PC4 is critical for its interaction with linker histone H1. By employing analytical ultracentrifugation and electron microscopy imaging of in vitro reconstituted nucleosomal array, we observed that phospho-mimic (PM) PC4 displays a superior chromatin condensation potential in conjunction with linker histone H1. ATAC-sequencing further unveiled the role of PC4 phosphorylation to be critical in inducing chromatin compaction of a wide array of coding and non-coding genes in vivo. Concordantly, phospho-PC4 mediated changes in chromatin accessibility led to gene repression and affected global histone modifications. We propose that the abundance of PC4 in its phosphorylated state contributes to genome compaction contrary to its co-activator function in driving several cellular processes like gene transcription and autophagy.


Asunto(s)
Cromatina , Proteínas de Unión al ADN , Histonas , Factores de Transcripción , Quinasa de la Caseína II/metabolismo , Cromatina/genética , Proteínas de Unión al ADN/metabolismo , Genoma Humano , Histonas/genética , Histonas/metabolismo , Humanos , Nucleosomas , Fosforilación , Factores de Transcripción/metabolismo
4.
J Biol Chem ; 298(8): 102200, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35772497

RESUMEN

DNA and core histones are hierarchically packaged into a complex organization called chromatin. The nucleosome assembly protein (NAP) family of histone chaperones is involved in the deposition of histone complexes H2A/H2B and H3/H4 onto DNA and prevents nonspecific aggregation of histones. Testis-specific Y-encoded protein (TSPY)-like protein 5 (TSPYL5) is a member of the TSPY-like protein family, which has been previously reported to interact with ubiquitin-specific protease USP7 and regulate cell proliferation and is thus implicated in various cancers, but its interaction with chromatin has not been investigated. In this study, we characterized the chromatin association of TSPYL5 and found that it preferentially binds histone H3/H4 via its C-terminal NAP-like domain both in vitro and ex vivo. We identified the critical residues involved in the TSPYL5-H3/H4 interaction and further quantified the binding affinity of TSPYL5 toward H3/H4 using biolayer interferometry. We then determined the binding stoichiometry of the TSPYL5-H3/H4 complex in vitro using a chemical cross-linking assay and size-exclusion chromatography coupled with multiangle laser light scattering. Our results indicate that a TSPYL5 dimer binds to either two histone H3/H4 dimers or a single tetramer. We further demonstrated that TSPYL5 has a specific affinity toward longer DNA fragments and that the same histone-binding residues are also critically involved in its DNA binding. Finally, employing histone deposition and supercoiling assays, we confirmed that TSPYL5 is a histone chaperone responsible for histone H3/H4 deposition and nucleosome assembly. We conclude that TSPYL5 is likely a new member of the NAP histone chaperone family.


Asunto(s)
Chaperonas de Histonas , Histonas , Proteínas Nucleares/metabolismo , ADN/metabolismo , Chaperonas de Histonas/genética , Histonas/metabolismo , Humanos , Masculino , Chaperonas Moleculares/metabolismo , Nucleosomas , Testículo/metabolismo , Peptidasa Específica de Ubiquitina 7/metabolismo
5.
Subcell Biochem ; 100: 3-65, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36301490

RESUMEN

Altered metabolism has become an emerging feature of cancer cells impacting their proliferation and metastatic potential in myriad ways. Proliferating heterogeneous tumor cells are surrounded by other resident or infiltrating cells, along with extracellular matrix proteins, and other secretory factors constituting the tumor microenvironment. The diverse cell types of the tumor microenvironment exhibit different molecular signatures that are regulated at their genetic and epigenetic levels. The cancer cells elicit intricate crosstalks with these supporting cells, exchanging essential metabolites which support their anabolic processes and can promote their survival, proliferation, EMT, angiogenesis, metastasis and even therapeutic resistance. In this context, carbohydrate metabolism ensures constant energy supply being a central axis from which other metabolic and biosynthetic pathways including amino acid and lipid metabolism and pentose phosphate pathway are diverged. In contrast to normal cells, increased glycolytic flux is a distinguishing feature of the highly proliferative cancer cells, which supports them to adapt to a hypoxic environment and also protects them from oxidative stress. Such rewired metabolic properties are often a result of epigenetic alterations in the cancer cells, which are mediated by several factors including, DNA, histone and non-histone protein modifications and non-coding RNAs. Conversely, epigenetic landscapes of the cancer cells are also dictated by their diverse metabolomes. Altogether, this metabolic and epigenetic interplay has immense potential for the development of efficient anti-cancer therapeutic strategies. In this book chapter we emphasize upon the significance of reprogrammed carbohydrate metabolism in regulating the tumor microenvironment and cancer progression, with an aim to explore the different metabolic and epigenetic targets for better cancer treatment.


Asunto(s)
Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/tratamiento farmacológico , Glucólisis/fisiología , Metabolismo de los Hidratos de Carbono , Histonas/metabolismo
6.
Subcell Biochem ; 100: 143-172, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36301494

RESUMEN

Autophagy is an intracellular catabolic degradative process in which damaged cellular organelles, unwanted proteins and different cytoplasmic components get recycled to maintain cellular homeostasis or metabolic balance. During autophagy, a double membrane vesicle is formed to engulf these cytosolic materials and fuse to lysosomes wherein the entire cargo degrades to be used again. Because of this unique recycling ability of cells, autophagy is a universal stress response mechanism. Dysregulation of autophagy leads to several diseases, including cancer, neurodegeneration and microbial infection. Thus, autophagy machineries have become targets for therapeutics. This chapter provides an overview of the paradoxical role of autophagy in tumorigenesis in the perspective of metabolism.


Asunto(s)
Autofagia , Neoplasias , Humanos , Citosol/metabolismo , Homeostasis , Lisosomas , Neoplasias/metabolismo
7.
Subcell Biochem ; 100: 269-336, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36301498

RESUMEN

Glucose metabolism plays a vital role in regulating cellular homeostasis as it acts as the central axis for energy metabolism, alteration in which may lead to serious consequences like metabolic disorders to life-threatening diseases like cancer. Malignant cells, on the other hand, help in tumor progression through abrupt cell proliferation by adapting to the changed metabolic milieu. Metabolic intermediates also vary from normal cells to cancerous ones to help the tumor manifestation. However, metabolic reprogramming is an important phenomenon of cells through which they try to maintain the balance between normal and carcinogenic outcomes. In this process, transcription factors and chromatin modifiers play an essential role to modify the chromatin landscape of important genes related directly or indirectly to metabolism. Our chapter surmises the importance of glucose metabolism and the role of metabolic intermediates in the cell. Also, we summarize the influence of histone effectors in reprogramming the cancer cell metabolism. An interesting aspect of this chapter includes the detailed methods to detect the aberrant metabolic flux, which can be instrumental for the therapeutic regimen of cancer.


Asunto(s)
Glucosa , Neoplasias , Humanos , Glucosa/metabolismo , Glucólisis/genética , Cromatina/genética , Neoplasias/metabolismo , Redes y Vías Metabólicas , Epigénesis Genética
8.
Subcell Biochem ; 100: 115-141, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36301493

RESUMEN

The accurate repair of genomic damage mediated by ionizing radiation (IR), chemo- or radiomimetic drugs, or other exogenous agents, is necessary for maintenance of genome integrity, preservation of cellular viability and prevention of oncogenic transformation. Eukaryotes have conserved mechanisms designed to perceive and repair the damaged DNA quite efficiently. Among the different types of DNA damage, double strand breaks (DSB) are the most detrimental. The cellular DNA DSB response is a hierarchical signaling network that integrates damage sensing and repair with chromatin structural changes that involve a range of pre-existing and induced covalent modifications. Recent studies have revealed that pre-existing histone modifications are important contributors within this signaling/repair network. This chapter discusses the role of a critical histone acetyl transferase (HAT) known as MOF (males absent on the first) and the histone deacetylases (HDACs) Sirtuins on histone H4K16 acetylation (H4K16ac) and DNA damage repair. We also discuss the role of this important histone modification in light of metabolic rewiring and its role in regulating human pathophysiologic states.


Asunto(s)
Envejecimiento , Histona Acetiltransferasas , Neoplasias , Sirtuinas , Humanos , Acetilación , Cromatina , ADN/metabolismo , Daño del ADN , Reparación del ADN , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Neoplasias/genética , Sirtuinas/genética , Sirtuinas/metabolismo
9.
Int J Mol Sci ; 25(1)2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38203286

RESUMEN

Black phosphorus (BP) is one of the most promising nanomaterials for cancer therapy. This 2D material is biocompatible and has strong photocatalytic activity, making it a powerful photosensitiser for combined NIR photothermal and photodynamic therapies. However, the fast degradation of BP in oxic conditions (including biological environments) still limits its use in cancer therapy. This work proposes a facile strategy to produce stable and highly concentrated BP suspensions using lysolipid temperature-sensitive liposomes (LTSLs). This approach also allows for co-encapsulating BP nanoflakes and doxorubicin, a potent chemotherapeutic drug. Finally, we demonstrate that our BP/doxorubicin formulation shows per se high antiproliferative action against an in vitro prostate cancer model and that the anticancer activity can be enhanced through NIR irradiance.


Asunto(s)
Liposomas , Neoplasias de la Próstata , Masculino , Humanos , Temperatura , Neoplasias de la Próstata/tratamiento farmacológico , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Fósforo
10.
FASEB J ; 35(9): e21814, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34369624

RESUMEN

Alteration in glucose homeostasis during cancer metabolism is an important phenomenon. Though several important transcription factors have been well studied in the context of the regulation of metabolic gene expression, the role of epigenetic readers in this regard remains still elusive. Epigenetic reader protein transcription factor 19 (TCF19) has been recently identified as a novel glucose and insulin-responsive factor that modulates histone posttranslational modifications to regulate glucose homeostasis in hepatocytes. Here we report that TCF19 interacts with a non-histone, well-known tumor suppressor protein 53 (p53) and co-regulates a wide array of metabolic genes. Among these, the p53-responsive carbohydrate metabolic genes Tp53-induced glycolysis and apoptosis regulator (TIGAR) and Cytochrome C Oxidase assembly protein 2 (SCO2), which are the key regulators of glycolysis and oxidative phosphorylation respectively, are under direct regulation of TCF19. Remarkably, TCF19 can form different transcription activation/repression complexes which show substantial overlap with that of p53, depending on glucose-mediated variant stress situations as obtained from IP/MS studies. Interestingly, we observed that TCF19/p53 complexes either have CBP or HDAC1 to epigenetically program the expression of TIGAR and SCO2 genes depending on short-term high glucose or prolonged high glucose conditions. TCF19 or p53 knockdown significantly altered the cellular lactate production and led to increased extracellular acidification rate. Similarly, OCR and cellular ATP production were reduced and mitochondrial membrane potential was compromised upon depletion of TCF19 or p53. Subsequently, through RNA-Seq analysis from patients with hepatocellular carcinoma, we observed that TCF19/p53-mediated metabolic regulation is fundamental for sustenance of cancer cells. Together the study proposes that TCF19/p53 complexes can regulate metabolic gene expression programs responsible for mitochondrial energy homeostasis and stress adaptation.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Mitocondrias/genética , Chaperonas Moleculares/genética , Monoéster Fosfórico Hidrolasas/genética , Factores de Transcripción/genética , Transcripción Genética/genética , Proteína p53 Supresora de Tumor/genética , Adaptación Biológica/genética , Apoptosis/genética , Línea Celular Tumoral , Metabolismo Energético/genética , Glucosa/genética , Células Hep G2 , Homeostasis/genética , Humanos , Potencial de la Membrana Mitocondrial/genética , Estrés Fisiológico/genética , Activación Transcripcional/genética
11.
Biochem J ; 478(5): 1117-1136, 2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33501928

RESUMEN

Asf1 is a highly conserved histone chaperone that regulates tightly coupled nucleosome assembly/disassembly process. We observed that Plasmodium falciparum Asf1 (PfAsf1) is ubiquitously expressed in different stages of the life cycle of the parasite. To gain further insight into its biological activity, we solved the structure of N-terminal histone chaperone domain of PfAsf1 (1-159 amino acids) by X-ray crystallography to a resolution of 2.4 Å. The structure is composed of two beta-sheet to form a beta-sandwich, which resembles an immunoglobulin-like fold. The surface-charge distribution of PfAsf1 is distinct from yAsf1 and hAsf1 although the core-structure shows significant similarity. The crystal-structure indicated that PfAsf1 may exist in a dimeric-state which was further confirmed by solution cross-linking experiment. PfAsf1 was found to specifically interact with Plasmodium histone H3 and H4 and was able to deposit H3/H4 dimer onto DNA-template to form disomes, showing its characteristic histone chaperone activity. We mapped the critical residues of PfAsf1 involved in histone H3/H4 interaction and confirmed by site-directed mutagenesis. Further analysis indicates that histone interacting surface of Asf1 is highly conserved while the dimerization interface is variable. Our results identify the role of PfAsf1 as a mediator of chromatin assembly in Plasmodium falciparum, which is the causative agent of malignant malaria in humans.


Asunto(s)
Ensamble y Desensamble de Cromatina , Replicación del ADN , Chaperonas de Histonas/química , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Plasmodium falciparum/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , Eritrocitos/parasitología , Evolución Molecular , Histonas/química , Humanos , Modelos Moleculares , Filogenia , Conformación Proteica , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Homología de Secuencia
12.
Mol Biol Rep ; 48(1): 897-914, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33400075

RESUMEN

Enhanced metastasis and disease recurrence accounts for the high mortality rates associated with cancer. The process of Epithelial-Mesenchymal Transition (EMT) contributes towards the augmentation of cancer invasiveness along with the gain of stem-like and the subsequent drug-resistant behavior. Apart from the well-established transcriptional regulation, EMT is also controlled post-transcriptionally by virtue of alternative splicing (AS). Numerous genes including Fibroblast Growth Factor receptor (FGFR) as well as CD44 are differentially spliced during this trans-differentiation process which, in turn, governs cancer progression. These splicing alterations are controlled by various splicing factors including ESRP, RBFOX2 as well as hnRNPs. Here, we have depicted the mechanisms governing the splice isoform switching of FGFR and CD44. Moreover, the role of the splice variants generated by AS of these gene transcripts in modulating the metastatic potential and stem-like/chemoresistant behavior of cancer cells has also been highlighted. Additionally, the involvement of splicing factors in regulating EMT/invasiveness along with drug-resistance as well as the metabolic properties of the cells has been emphasized. Tumorigenesis is accompanied by a remodeling of the cellular splicing profile generating diverse protein isoforms which, in turn, control the cancer-associated hallmarks. Therefore, we have also briefly discussed about a wide variety of genes which are differentially spliced in the tumor cells and promote cancer progression. We have also outlined different strategies for targeting the tumor-associated splicing events which have shown promising results and therefore this approach might be useful in developing therapies to reduce cancer aggressiveness in a more specific manner.


Asunto(s)
Carcinogénesis/genética , Resistencia a Antineoplásicos/genética , Transición Epitelial-Mesenquimal/genética , Receptores de Hialuranos/genética , Recurrencia Local de Neoplasia/genética , Neoplasias/genética , Receptores de Factores de Crecimiento de Fibroblastos/genética , Empalme Alternativo , Antineoplásicos/uso terapéutico , Carcinogénesis/efectos de los fármacos , Carcinogénesis/patología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Ribonucleoproteínas Nucleares Heterogéneas/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Humanos , Receptores de Hialuranos/metabolismo , Metástasis Linfática , Invasividad Neoplásica , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/metabolismo , Recurrencia Local de Neoplasia/patología , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
13.
Biochem J ; 477(19): 3803-3818, 2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-32926159

RESUMEN

hTERT, the catalytic component of the human telomerase enzyme, is regulated by post-translational modifications, like phosphorylation and ubiquitination by multiple proteins which remarkably affects the overall activity of the enzyme. Here we report that hTERT gets SUMOylated by SUMO1 and polycomb protein CBX4 acts as the SUMO E3 ligase of hTERT. hTERT SUMOylation positively regulates its telomerase activity which can be inhibited by SENP3-mediated deSUMOylation. Interestingly, we have established a new role of hTERT SUMOylation in the repression of E-cadherin gene expression and consequent triggering on the epithelial-mesenchymal-transition (EMT) program in breast cancer cells. We also observed that catalytically active CBX4, leads to retention of hTERT/ZEB1 complex onto E-cadherin promoter leading to its repression through hTERT-SUMOylation. Further through wound healing and invasion assays in breast cancer cells, we showed the tumor promoting ability of hTERT was significantly compromised upon overexpression of SUMO-defective mutant of hTERT. Thus our findings establish a new post-translational modification of hTERT which on one hand is involved in telomerase activity maintenance and on the other hand plays a crucial role in the regulation of gene expression thereby promoting migration and invasion of breast cancer cells.


Asunto(s)
Antígenos CD/metabolismo , Neoplasias de la Mama/metabolismo , Cadherinas/metabolismo , Movimiento Celular , Ligasas/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas del Grupo Polycomb/metabolismo , Telomerasa/metabolismo , Transcripción Genética , Antígenos CD/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Cadherinas/genética , Femenino , Células HeLa , Humanos , Ligasas/genética , Células MCF-7 , Invasividad Neoplásica , Proteínas de Neoplasias/genética , Proteínas del Grupo Polycomb/genética , Telomerasa/genética
14.
Biochemistry ; 59(4): 389-399, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31746185

RESUMEN

Transcription factor 19 (TCF19) plays critical roles in type 1 diabetes and the maintenance of pancreatic ß cells. Recent studies have also implicated TCF19 in cell proliferation of hepatic carcinoma and non-small cell lung carcinoma; however, the mechanism underlying this regulation remains elusive. At the molecular level, TCF19 contains two modules, the plant homeodomain (PHD) finger and the forkhead-associated (FHA) domain, of unclear function. Here, we show that TCF19 mediates hepatocellular carcinoma HepG2 cell proliferation through its PHD finger that recognizes trimethylated lysine 4 of histone 3 (H3K4me3). W316 of the PHD finger of TCF19 is one of the critical residues eliciting this function. Whole genome microarray analysis and orthogonal cell-based assays identified a large subset of genes involved in cell survival and proliferation that depend on TCF19. Our data suggest that TCF19 acts as a pro-oncogene in hepatocellular carcinoma cells and that its functional PHD finger is critical in cell proliferation.


Asunto(s)
Histonas/metabolismo , Factores de Transcripción/metabolismo , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Proliferación Celular/fisiología , Proteínas de Unión al ADN/metabolismo , Células Hep G2 , Código de Histonas , Histonas/genética , Humanos , Neoplasias Hepáticas/metabolismo , Lisina/metabolismo , Metilación , Modelos Moleculares , Dedos de Zinc PHD/fisiología , Unión Proteica , Factores de Transcripción/fisiología
15.
Carcinogenesis ; 41(12): 1767-1780, 2020 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-32386317

RESUMEN

Previously, our laboratory demonstrated that a deregulated E2F5/p38/SMAD3 axis was associated with uncontrolled cellular proliferation in prostate cancer (PCa). Here, we investigate the role of E2F5 in PCa in further details. RNAi-mediated E2F5 knockdown and pathway-focused gene expression profiling in PC3 cells identified TFPI2 as a downstream target of E2F5. Manipulation of E2F5 expression was also found to alter MMP-2 and MMP-9 levels as detected by Proteome Profiler array, western blot and reverse transcription coupled quantitative polymerase chain reaction Site-directed mutagenesis, dual-luciferase assays and chromatin immunoprecipitation with anti-E2F5-IgG coupled with qPCR confirmed recruitment of E2F5 on TFPI2, MMP-2 and MMP-9 promoters. RNAi-mediated knockdown of E2F5 expression in PC3 caused a significant alteration of cell migration while that of TFFI2 resulted in a modest change. Abrogation of E2F5 and TFPI2 expression was associated with significant changes in the gelatinolytic activity of active forms of MMP-2 and MMP-9. Moreover, E2F5, MMP-2 and MMP-9 levels were elevated in biopsies of PCa patients relative to that of benign hyperplasia, while TFPI2 expression was reduced. MMP-9 was coimmunoprecipitated with anti-TFPI2-IgG in PCa tissue samples suggesting a direct interaction between the proteins. Finally, artemisinin treatment in PC3 cells repressed E2F5 along with MMP-2/MMP-9 while triggering TFPI2 expression which alleviated PC3 aggressiveness possibly through inhibition of MMP activities. Together, our study reinstates an oncogenic role of E2F5 which operates as a dual-function transcription factor for its targets TFPI2, MMP-2 and MMP-9 and promotes cellular invasiveness. This study also indicates a therapeutic potential of artemisinin, a natural compound which acts by correcting dysfunctional E2F5/TFPI2/MMP axis in PCa.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Factor de Transcripción E2F5/metabolismo , Regulación Neoplásica de la Expresión Génica , Glicoproteínas/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Neoplasias de la Próstata/patología , Apoptosis , Biomarcadores de Tumor/genética , Movimiento Celular , Proliferación Celular , Factor de Transcripción E2F5/genética , Glicoproteínas/genética , Humanos , Masculino , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/genética , Invasividad Neoplásica , Pronóstico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Células Tumorales Cultivadas
16.
Int J Mol Sci ; 21(10)2020 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-32466143

RESUMEN

Genome-wide RNA sequencing has shown that only a small fraction of the human genome is transcribed into protein-coding mRNAs. While once thought to be "junk" DNA, recent findings indicate that the rest of the genome encodes many types of non-coding RNA molecules with a myriad of functions still being determined. Among the non-coding RNAs, long non-coding RNAs (lncRNA) and enhancer RNAs (eRNA) are found to be most copious. While their exact biological functions and mechanisms of action are currently unknown, technologies such as next-generation RNA sequencing (RNA-seq) and global nuclear run-on sequencing (GRO-seq) have begun deciphering their expression patterns and biological significance. In addition to their identification, it has been shown that the expression of long non-coding RNAs and enhancer RNAs can vary due to spatial, temporal, developmental, or hormonal variations. In this review, we explore newly reported information on estrogen-regulated eRNAs and lncRNAs and their associated biological functions to help outline their markedly prominent roles in estrogen-dependent signaling.


Asunto(s)
Elementos de Facilitación Genéticos , Estrógenos/metabolismo , ARN Largo no Codificante/metabolismo , ARN Pequeño no Traducido/metabolismo , Transducción de Señal , Regulación Neoplásica de la Expresión Génica , Humanos , ARN Largo no Codificante/genética , ARN Pequeño no Traducido/genética , Activación Transcripcional
17.
J Biol Chem ; 293(20): 7905-7906, 2018 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-29777018

RESUMEN

Gluconeogenesis in the liver converts lipids and several other noncarbohydrate precursors into glucose, ensuring that blood sugar levels are maintained at healthy levels, especially during fasting. Effective regulation of gluconeogenesis is therefore critical for maintaining systemic metabolic homeostasis. Zhang and colleagues have discovered that the ubiquitous transcriptional regulator nuclear factor Y (NF-Y) confers cAMP responsiveness to key gluconeogenic genes and up-regulates hepatic glucose production. The study expands our understanding of transcriptional regulation of hepatic gluconeogenesis and also presents critical insights into the function of NF-Y in the liver.


Asunto(s)
Gluconeogénesis , Factores de Transcripción , Animales , Factor de Unión a CCAAT , Plumas , Glucosa , Hepatocitos , Hígado , Ratones , Azúcares
18.
Gen Comp Endocrinol ; 282: 113196, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31163182

RESUMEN

Seasonal activation of the vertebrate hypothalamic-pituitary-gonadal (HPG) axis and gonadal development is initiated by gonadotropin-releasing hormone-I (GnRH) release from the hypothalamus. In photoperiodic species, the consistent annual change in photoperiod is the primary environmental signal affecting GnRH cell activity, including changes in the synthesis and secretion of this neuropeptide. Non-photoperiodic environmental cues such as energy availability also influence HPG axis activity, but the mechanisms mediating this influence, in particular on the GnRH system, are unclear. Understanding how the neuroendocrine system integrates environmental information is critical in determining the plasticity and adaptability of physiological responses to changing environments. The primary objective of this study was to investigate GnRH-mediated changes in HPG axis activity and gonadal development in response to energy availability in a wild bird. We hypothesized that negative energy balance inhibits HPG axis activity by affecting GnRH secretion. Moderate food restriction for several weeks in male house finches, Haemorhous mexicanus, decreased body condition and inhibited photoinduced testicular growth compared to birds fed ad libitum. Food restriction did not affect plasma luteinizing hormone (LH; a correlate of GnRH release) or plasma testosterone, but it enhanced the plasma LH response to an injection of the glutamatergic agonist, N-methyl-D-aspartate (NMDA). Thus, food restriction may decrease photoinduced HPG axis activation by acting centrally, in particular by attenuating the release of accumulated GnRH stores.


Asunto(s)
Pinzones/metabolismo , Alimentos , Hormona Liberadora de Gonadotropina/metabolismo , Animales , Cloaca/fisiología , Pinzones/sangre , Hormona Luteinizante/sangre , Masculino , Precursores de Proteínas , Testículo/metabolismo , Testosterona/sangre
19.
J Biol Chem ; 292(50): 20379-20393, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29046350

RESUMEN

Promyelocytic leukemia nuclear bodies (PML-NB) are sub-nuclear organelles that are the hub of numerous proteins. DNA/RNA viruses often hijack the cellular factors resident in PML-NBs to promote their proliferation in host cells. Hepatitis B virus (HBV), belonging to Hepadnaviridae family, remains undetected in early infection as it does not induce the innate immune response and is known to be the cause of several hepatic diseases leading to cirrhosis and hepatocellular carcinoma. The association of PML-NB proteins and HBV is being addressed in a number of recent studies. Here, we report that the PML-NB protein Speckled 110 kDa (Sp110) is SUMO1-modified and undergoes a deSUMOylation-driven release from the PML-NB in the presence of HBV. Intriguingly, Sp110 knockdown significantly reduced viral DNA load in the culture supernatant by activation of the type I interferon-response pathway. Furthermore, we found that Sp110 differentially regulates several direct target genes of hepatitis B virus protein X (HBx), a viral co-factor. Subsequently, we identified Sp110 as a novel interactor of HBx and found this association to be essential for the exit of Sp110 from the PML-NB during HBV infection and HBx recruitment on the promoter of these genes. HBx, in turn, modulates the recruitment of its associated transcription cofactors p300/HDAC1 to these co-regulated genes, thereby altering the host gene expression program in favor of viral persistence. Thus, we report a mechanism by which HBV can evade host immune response by hijacking the PML-NB protein Sp110, and therefore, we propose it to be a novel target for antiviral therapy.


Asunto(s)
Virus de la Hepatitis B/metabolismo , Hepatitis B Crónica/metabolismo , Hepatocitos/metabolismo , Cuerpos de Inclusión Viral/metabolismo , Antígenos de Histocompatibilidad Menor/metabolismo , Proteínas Nucleares/metabolismo , Sumoilación , Transactivadores/fisiología , Apoptosis , Biomarcadores/sangre , Biomarcadores/metabolismo , ADN Viral/metabolismo , Regulación Bacteriana de la Expresión Génica , Células Hep G2 , Virus de la Hepatitis B/crecimiento & desarrollo , Virus de la Hepatitis B/inmunología , Virus de la Hepatitis B/aislamiento & purificación , Hepatitis B Crónica/inmunología , Hepatitis B Crónica/patología , Hepatitis B Crónica/virología , Hepatocitos/inmunología , Hepatocitos/patología , Hepatocitos/virología , Interacciones Huésped-Patógeno , Humanos , Inmunidad Innata , Cuerpos de Inclusión Viral/patología , Cuerpos de Inclusión Viral/virología , Antígenos de Histocompatibilidad Menor/sangre , Antígenos de Histocompatibilidad Menor/genética , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/sangre , Proteínas Nucleares/genética , Regiones Promotoras Genéticas , Transporte de Proteínas , Interferencia de ARN , Carga Viral , Proteínas Virales/genética , Proteínas Virales/metabolismo , Proteínas Reguladoras y Accesorias Virales , Fenómenos Fisiológicos de los Virus , Replicación Viral
20.
J Biol Chem ; 292(50): 20362-20378, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29042441

RESUMEN

Transcription factor 19 (TCF19) has been reported as a type 1 diabetes-associated locus involved in maintenance of pancreatic ß cells through a fine-tuned regulation of cell proliferation and apoptosis. TCF19 also exhibits genomic association with type 2 diabetes, although the precise molecular mechanism remains unknown. It harbors both a plant homeodomain and a forkhead-associated domain implicated in epigenetic recognition and gene regulation, a phenomenon that has remained unexplored. Here, we show that TCF19 selectively interacts with histone 3 lysine 4 trimethylation through its plant homeodomain finger. Knocking down TCF19 under high-glucose conditions affected many metabolic processes, including gluconeogenesis. We found that TCF19 overexpression represses de novo glucose production in HepG2 cells. The transcriptional repression of key genes, induced by TCF19, coincided with NuRD (nucleosome-remodeling-deacetylase) complex recruitment to the promoters of these genes. TCF19 interacted with CHD4 (chromodomain helicase DNA-binding protein 4), which is a part of the NuRD complex, in a glucose concentration-independent manner. In summary, our results show that TCF19 interacts with an active transcription mark and recruits a co-repressor complex to regulate gluconeogenic gene expression in HepG2 cells. Our study offers critical insights into the molecular mechanisms of transcriptional regulation of gluconeogenesis and into the roles of chromatin readers in metabolic homeostasis.


Asunto(s)
Gluconeogénesis , Hepatocitos/metabolismo , Histonas/metabolismo , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Modelos Moleculares , Procesamiento Proteico-Postraduccional , Factores de Transcripción/metabolismo , Línea Celular , Epigénesis Genética , Regulación Enzimológica de la Expresión Génica , Hepatocitos/citología , Hepatocitos/enzimología , Histonas/química , Histonas/genética , Humanos , Lisina , Metilación , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/química , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida , Mutación , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Regiones Promotoras Genéticas , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Factores de Transcripción/química , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA