Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cell ; 178(3): 672-685.e12, 2019 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31257028

RESUMEN

Homeostatic control of core body temperature is essential for survival. Temperature is sensed by specific neurons, in turn eliciting both behavioral (i.e., locomotion) and physiologic (i.e., thermogenesis, vasodilatation) responses. Here, we report that a population of GABAergic (Vgat-expressing) neurons in the dorsolateral portion of the dorsal raphe nucleus (DRN), hereafter DRNVgat neurons, are activated by ambient heat and bidirectionally regulate energy expenditure through changes in both thermogenesis and locomotion. We find that DRNVgat neurons innervate brown fat via a descending projection to the raphe pallidus (RPa). These neurons also densely innervate ascending targets implicated in the central regulation of energy expenditure, including the hypothalamus and extended amygdala. Optogenetic stimulation of different projection targets reveals that DRNVgat neurons are capable of regulating thermogenesis through both a "direct" descending pathway through the RPa and multiple "indirect" ascending pathways. This work establishes a key regulatory role for DRNVgat neurons in controlling energy expenditure.


Asunto(s)
Metabolismo Energético , Neuronas GABAérgicas/metabolismo , Tejido Adiposo Pardo/metabolismo , Animales , Mapeo Encefálico , Clozapina/análogos & derivados , Clozapina/farmacología , Núcleo Dorsal del Rafe/metabolismo , Expresión Génica/efectos de los fármacos , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Optogenética , Temperatura , Termogénesis
2.
J Neurochem ; 142(4): 545-559, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28556983

RESUMEN

Mitochondrial Protein Kinase A (PKA) and PTEN-induced kinase 1 (PINK1), which is linked to Parkinson's disease, are two neuroprotective serine/threonine kinases that regulate dendrite remodeling and mitochondrial function. We have previously shown that PINK1 regulates dendrite morphology by enhancing PKA activity. Here, we show the molecular mechanisms by which PINK1 and PKA in the mitochondrion interact to regulate dendrite remodeling, mitochondrial morphology, content, and trafficking in dendrites. PINK1-deficient cortical neurons exhibit impaired mitochondrial trafficking, reduced mitochondrial content, fragmented mitochondria, and a reduction in dendrite outgrowth compared to wild-type neurons. Transient expression of wild-type, but not a PKA-binding-deficient mutant of the PKA-mitochondrial scaffold dual-specificity A Kinase Anchoring Protein 1 (D-AKAP1), restores mitochondrial trafficking, morphology, and content in dendrites of PINK1-deficient cortical neurons suggesting that recruiting PKA to the mitochondrion reverses mitochondrial pathology in dendrites induced by loss of PINK1. Mechanistically, full-length and cleaved forms of PINK1 increase the binding of the regulatory subunit ß of PKA (PKA/RIIß) to D-AKAP1 to enhance the autocatalytic-mediated phosphorylation of PKA/RIIß and PKA activity. D-AKAP1/PKA governs mitochondrial trafficking in dendrites via the Miro-2/TRAK2 complex and by increasing the phosphorylation of Miro-2. Our study identifies a new role of D-AKAP1 in regulating mitochondrial trafficking through Miro-2, and supports a model in which PINK1 and mitochondrial PKA participate in a similar neuroprotective signaling pathway to maintain dendrite connectivity.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Dendritas/metabolismo , Mitocondrias/metabolismo , Neuronas/metabolismo , Proteínas Quinasas/metabolismo , Animales , Células COS , Línea Celular , Femenino , Ratones Endogámicos C57BL , Proteínas Mitocondriales/metabolismo , Enfermedad de Parkinson/metabolismo , Transporte de Proteínas/fisiología , Ubiquitina-Proteína Ligasas/metabolismo
3.
Rev Neurosci ; 26(3): 359-70, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25741943

RESUMEN

In neurons, enhanced protein kinase A (PKA) signaling elevates synaptic plasticity, promotes neuronal development, and increases dopamine synthesis. By contrast, a decline in PKA signaling contributes to the etiology of several brain degenerative diseases, including Alzheimer's disease and Parkinson's disease, suggesting that PKA predominantly plays a neuroprotective role. A-kinase anchoring proteins (AKAPs) are large multidomain scaffold proteins that target PKA and other signaling molecules to distinct subcellular sites to strategically localize PKA signaling at dendrites, dendritic spines, cytosol, and axons. PKA can be recruited to the outer mitochondrial membrane by associating with three different AKAPs to regulate mitochondrial dynamics, structure, mitochondrial respiration, trafficking, dendrite morphology, and neuronal survival. In this review, we survey the myriad of essential neuronal functions modulated by PKA but place a special emphasis on mitochondrially localized PKA. Finally, we offer an updated overview of how loss of PKA signaling contributes to the etiology of several brain degenerative diseases.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Mitocondrias/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo , Dendritas/metabolismo , Humanos , Transducción de Señal
4.
Int J Mol Sci ; 14(11): 22163-89, 2013 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-24217228

RESUMEN

Since their discovery, Parkinsonian toxins (6-hydroxydopamine, MPP+, paraquat, and rotenone) have been widely employed as in vivo and in vitro chemical models of Parkinson's disease (PD). Alterations in mitochondrial homeostasis, protein quality control pathways, and more recently, autophagy/mitophagy have been implicated in neurotoxin models of PD. Here, we highlight the molecular mechanisms by which different PD toxins dysregulate autophagy/mitophagy and how alterations of these pathways play beneficial or detrimental roles in dopamine neurons. The convergent and divergent effects of PD toxins on mitochondrial function and autophagy/mitophagy are also discussed in this review. Furthermore, we propose new diagnostic tools and discuss how pharmacological modulators of autophagy/mitophagy can be developed as disease-modifying treatments for PD. Finally, we discuss the critical need to identify endogenous and synthetic forms of PD toxins and develop efficient health preventive programs to mitigate the risk of developing PD.


Asunto(s)
Mitofagia/efectos de los fármacos , Neurotoxinas/administración & dosificación , Trastornos Parkinsonianos/patología , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Autofagia/efectos de los fármacos , Autofagia/genética , Humanos , Intoxicación por MPTP/patología , Metanfetamina/toxicidad , Oxidopamina/toxicidad , Paraquat/toxicidad , Trastornos Parkinsonianos/etiología , Rotenona/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA