Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(23): e2211787120, 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37252982

RESUMEN

Understanding the local chemical ordering propensity in random solid solutions, and tailoring its strength, can guide the design and discovery of complex, paradigm-shifting multicomponent alloys. First, we present a simple thermodynamic framework, based solely on binary enthalpies of mixing, to select optimal alloying elements to control the nature and extent of chemical ordering in high-entropy alloys (HEAs). Next, we couple high-resolution electron microscopy, atom probe tomography, hybrid Monte-Carlo, special quasirandom structures, and density functional theory calculations to demonstrate how controlled additions of Al and Ti and subsequent annealing drive chemical ordering in nearly random equiatomic face-centered cubic CoFeNi solid solution. We establish that short-range ordered domains, the precursors of long-range ordered precipitates, inform mechanical properties. Specifically, a progressively increasing local order boosts the tensile yield strengths of the parent CoFeNi alloy by a factor of four while also substantially improving ductility, which breaks the so-called strength-ductility paradox. Finally, we validate the generality of our approach by predicting and demonstrating that controlled additions of Al, which has large negative enthalpies of mixing with the constituent elements of another nearly random body-centered cubic refractory NbTaTi HEA, also introduces chemical ordering and enhances mechanical properties.

2.
Microsc Microanal ; : 1-11, 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35686440

RESUMEN

Refractory high-entropy alloys (RHEAs) are promising candidates for next-generation high-temperature materials. RHEAs containing Al, often exhibit a checkered pattern microstructure comprising a combination of disordered BCC and ordered B2 phases. Since the ordered B2 phase is based on the BCC parent matrix, distinguishing these two phases can be rather challenging. Advanced characterization techniques are necessary for a reliable qualitative and quantitative analysis of BCC and B2 phases in RHEAs. Additionally, there is a tendency for transformation of the ordered B2 phase into more complex ordered-omega type phases that are usually deleterious to mechanical properties. The current study focuses on the phase stability of a candidate RHEA, Al0.5Mo0.5NbTa0.5TiZr. Correlative transmission electron microscopy (TEM) and atom probe tomography (APT) have been employed to investigate the phase stability and transformation pathway of this RHEA when isothermally annealed at 800°C. The results show that a metastable two-phase BCC + B2 microstructure formed at the early stages of decomposition, eventually transforming into a three-phase BCC + B2 + hP18 microstructure. The hP18 phase is an ordered omega derivative of the ordered B2 phase. The correlative microscopy techniques (TEM and APT) reveal a very interesting interplay of compositional partitioning between the different phases and their respective stability.

3.
iScience ; 25(4): 104047, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35359811

RESUMEN

Magnetic high-entropy alloys (HEAs) are a new category of high-performance magnetic materials, with multicomponent concentrated compositions and complex multi-phase structures. Although there have been numerous reports of their interesting magnetic properties, there is very limited understanding about the interplay between their hierarchical multi-phase structures and the resulting magnetic behavior. We reveal for the first time the influence of a hierarchically decomposed B2 + A2 structure in an AlCo0.5Cr0.5FeNi HEA on the formation of magnetic vortex states within individual A2 (disordered BCC) precipitates, which are distributed in an ordered B2 matrix that is weakly ferromagnetic. Non-magnetic or weakly ferromagnetic B2 precipitates in large magnetic domains of the A2 phase, and strongly magnetic Fe-Co-rich interphase A2 regions, are also observed. These results provide important insight into the origin of coercivity in this HEA, which can be attributed to a complex magnetization process that includes the successive reversal of magnetic vortices.

4.
Sci Rep ; 11(1): 633, 2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33437003

RESUMEN

Rapid thermokinetics associated with laser-based additive manufacturing produces strong bulk crystallographic texture in the printed component. The present study identifies such a bulk texture effect on elastic anisotropy in laser powder bed fused Ti6Al4V by employing an effective bulk modulus elastography technique coupled with ultrasound shear wave velocity measurement at a frequency of 20 MHz inside the material. The combined technique identified significant attenuation of shear velocity from 3322 ± 20.12 to 3240 ± 21.01 m/s at 45[Formula: see text] and 90[Formula: see text] orientations of shear wave plane with respect to the build plane of printed block of Ti6Al4V. Correspondingly, the reduction in shear modulus from 48.46 ± 0.82 to 46.40 ± 0.88 GPa was obtained at these orientations. Such attenuation is rationalized based on the orientations of [Formula: see text] crystallographic variants within prior columnar [Formula: see text] grains in additively manufactured Ti6Al4V.

5.
Sci Rep ; 10(1): 4836, 2020 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-32179812

RESUMEN

This paper reports a novel eutectoid nano-lamellar (FCC + L12)/(BCC + B2) microstructure that has been discovered in a relatively simple Al0.3CoFeNi high entropy alloy (HEA) or complex concentrated alloy (CCA). This novel eutectoid nano-lamellar microstructure presumably results from the complex interplay between Al-mediated lattice distortion (due to its larger atomic radius) in a face-centered cubic (FCC) CoFeNi solid solution, and a chemical ordering tendency leading to precipitation of ordered phases such as L12 and B2. This eutectoid microstructure is a result of solid-state decomposition of the FCC matrix and therefore distinct from the commonly reported eutectic microstructure in HEAs which results from solidification. This novel nano-lamellar microstructure exhibits a tensile yield strength of 1074 MPa with a reasonable ductility of 8%. The same alloy can be tuned to form a more damage-tolerant FCC + B2 microstructure, retaining high tensile yield stress (~900 MPa) with appreciable tensile ductility (>20%), via annealing at 700 °C. Such tunability of microstructures with dramatically different mechanical properties can be effectively engineered in the same CCA, by exploiting the complex interplay between ordering tendencies and lattice distortion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA