Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Haematologica ; 105(4): 971-986, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31371410

RESUMEN

Leukemia stem cells contribute to drug-resistance and relapse in chronic myeloid leukemia (CML) and BCR-ABL1 inhibitor monotherapy fails to eliminate these cells, thereby necessitating alternate therapeutic strategies for patients CML. The peroxisome proliferator-activated receptor-γ (PPARγ) agonist pioglitazone downregulates signal transducer and activator of transcription 5 (STAT5) and in combination with imatinib induces complete molecular response in imatinib-refractory patients by eroding leukemia stem cells. Thiazolidinediones such as pioglitazone are, however, associated with severe side effects. To identify alternate therapeutic strategies for CML we screened Food and Drug Administration-approved drugs in K562 cells and identified the leprosy drug clofazimine as an inhibitor of viability of these cells. Here we show that clofazimine induced apoptosis of blood mononuclear cells derived from patients with CML, with a particularly robust effect in imatinib-resistant cells. Clofazimine also induced apoptosis of CD34+38- progenitors and quiescent CD34+ cells from CML patients but not of hematopoietic progenitor cells from healthy donors. Mechanistic evaluation revealed that clofazimine, via physical interaction with PPARγ, induced nuclear factor kB-p65 proteasomal degradation, which led to sequential myeloblastoma oncoprotein and peroxiredoxin 1 downregulation and concomitant induction of reactive oxygen species-mediated apoptosis. Clofazimine also suppressed STAT5 expression and consequently downregulated stem cell maintenance factors hypoxia-inducible factor-1α and -2α and Cbp/P300 interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 (CITED2). Combining imatinib with clofazimine caused a far superior synergy than that with pioglitazone, with clofazimine reducing the half maximal inhibitory concentration (IC50) of imatinib by >4 logs and remarkably eroding quiescent CD34+ cells. In a K562 xenograft study clofazimine and imatinib co-treatment showed more robust efficacy than the individual treatments. We propose clinical evaluation of clofazimine in imatinib-refractory CML.


Asunto(s)
Lepra , Leucemia Mielógena Crónica BCR-ABL Positiva , Preparaciones Farmacéuticas , Apoptosis , Clofazimina/farmacología , Resistencia a Antineoplásicos , Proteínas de Fusión bcr-abl/genética , Humanos , Mesilato de Imatinib/farmacología , Células K562 , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , PPAR gamma
2.
FEBS Lett ; 580(16): 3980-8, 2006 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-16806195

RESUMEN

We have previously demonstrated that introgression of PcINO1 gene from Porteresia coarctata (Roxb.) Tateoka, coding for a novel salt-tolerant L-myo-inositol 1-phosphate synthase (MIPS) protein, confers salt tolerance to transgenic tobacco plants (Majee, M., Maitra, S., Dastidar, K.G., Pattnaik, S., Chatterjee, A., Hait, N.C., Das, K.P. and Majumder, A.L. (2004) A novel salt-tolerant L-myo-inositol-1-phosphate synthase from Porteresia coarctata (Roxb.) Tateoka, a halophytic wild rice: molecular cloning, bacterial overexpression, characterization, and functional introgression into tobacco-conferring salt-tolerance phenotype. J. Biol. Chem. 279, 28539-28552). In this communication we have shown that functional introgression of the PcINO1 gene confers salt-tolerance to evolutionary diverse organisms from prokaryotes to eukaryotes including crop plants albeit to a variable extent. A direct correlation between unabated increased synthesis of inositol under salinity stress by the PcINO1 gene product and salt tolerance has been demonstrated for all the systems pointing towards the universality of the application across evolutionary divergent taxa.


Asunto(s)
Adaptación Fisiológica/efectos de los fármacos , Evolución Biológica , Mio-Inositol-1-Fosfato Sintasa/metabolismo , Poaceae/efectos de los fármacos , Poaceae/enzimología , Cloruro de Sodio/farmacología , Brassica/efectos de los fármacos , Brassica/crecimiento & desarrollo , Escherichia coli/citología , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Poaceae/crecimiento & desarrollo , Schizosaccharomyces/citología , Schizosaccharomyces/efectos de los fármacos , Schizosaccharomyces/crecimiento & desarrollo
3.
Planta ; 224(2): 367-79, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16453101

RESUMEN

L-myo-inositol 1-phosphate synthase (EC 5.5.1.4; MIPS) catalyzes the first rate limiting conversion of D-glucose 6-phosphate to L-myo-inositol 1-phosphate in the inositol biosynthetic pathway. In an earlier communication we have reported two forms of MIPS in Synechocystis sp. PCC6803 (Chatterjee et al. in Planta 218:989-998, 2004). One of the forms with an approximately 50 kDa subunit has been found to be coded by an as yet unassigned ORF, sll1722. In the present study we have purified the second isoform of MIPS as an approximately 65 kDa protein from the crude extract of Synechocystis sp. PCC6803 to apparent homogeneity and biochemically characterized. MALDI-TOF analysis of the 65 kDa protein led to its identification as acetolactate synthase large subunit (EC 2.2.1.6; ALS), the putatively assigned ORF sll1981 of Synechocystis sp. PCC6803. The PCR amplified approximately 1.6 kb product of sll1981 was found to functionally complement the yeast inositol auxotroph, FY250 and could be expressed as an immunoreactive approximately 65 kDa MIPS protein in the natural inositol auxotroph, Schizosaccharomyces pombe. In vitro MIPS activity and cross reactivity against MIPS antibody of purified recombinant sll1981 further consolidated its identity as the second probable MIPS gene in Synechocystis sp. PCC6803. Sequence comparison along with available crystal structure analysis of the yeast MIPS reveals conservation of several amino acids in sll1981 essential for substrate and co-factor binding. Comparison with other prokaryotic and eukaryotic MIPS sequences and phylogenetic analysis, however, revealed that like sll1722, sll1981 is quite divergent from others. It is probable that sll1981 may code for a bifunctional enzyme protein having conserved domains for both MIPS and acetolactate synthase (ALS) activities.


Asunto(s)
Acetolactato Sintasa/metabolismo , Mio-Inositol-1-Fosfato Sintasa/metabolismo , Synechocystis/enzimología , Acetolactato Sintasa/química , Secuencia de Aminoácidos , Extractos Celulares , Expresión Génica , Genes Bacterianos/genética , Prueba de Complementación Genética , Inositol/metabolismo , Datos de Secuencia Molecular , Peso Molecular , Mio-Inositol-1-Fosfato Sintasa/química , Mio-Inositol-1-Fosfato Sintasa/genética , Mio-Inositol-1-Fosfato Sintasa/aislamiento & purificación , Sistemas de Lectura Abierta/genética , Péptidos/química , Reacción en Cadena de la Polimerasa , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/citología , Schizosaccharomyces/genética , Alineación de Secuencia , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Homología Estructural de Proteína
4.
J Biol Chem ; 279(27): 28539-52, 2004 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-15016817

RESUMEN

l-myo-Inositol-1-phosphate synthase (EC 5.5.1.4, MIPS), an evolutionarily conserved enzyme protein, catalyzes the synthesis of inositol, which is implicated in a number of metabolic reactions in the biological kingdom. Here we report on the isolation of the gene (PINO1) for a novel salt-tolerant MIPS from the wild halophytic rice, Porteresia coarctata (Roxb.) Tateoka. Identity of the PINO1 gene was confirmed by functional complementation in a yeast inositol auxotrophic strain. Comparison of the nucleotide and deduced amino acid sequences of PINO1 with that of the homologous gene from Oryza sativa L. (RINO1) revealed distinct differences in a stretch of 37 amino acids, between amino acids 174 and 210. Purified bacterially expressed PINO1 protein demonstrated a salt-tolerant character in vitro compared with the salt-sensitive RINO1 protein as with those purified from the native source or an expressed salt-sensitive mutant PINO1 protein wherein amino acids 174-210 have been deleted. Analysis of the salt effect on oligomerization and tryptophan fluorescence of the RINO1 and PINO1 proteins revealed that the structure of PINO1 protein is stable toward salt environment. Furthermore, introgression of PINO1 rendered transgenic tobacco plants capable of growth in 200-300 mm NaCl with retention of approximately 40-80% of the photosynthetic competence with concomitant increased inositol production compared with unstressed control. MIPS protein isolated from PINO1 transgenics showed salt-tolerant property in vitro confirming functional expression in planta of the PINO1 gene. To our knowledge, this is the first report of a salt-tolerant MIPS from any source.


Asunto(s)
Mio-Inositol-1-Fosfato Sintasa/farmacología , Oryza/genética , Poaceae/enzimología , Sales (Química)/farmacología , Secuencia de Aminoácidos , Naftalenosulfonatos de Anilina/farmacología , Secuencia de Bases , Western Blotting , División Celular , Cromatografía de Gases , Clonación Molecular , Electroforesis en Gel de Poliacrilamida , Eliminación de Gen , Prueba de Complementación Genética , Vectores Genéticos , Inositol/química , Datos de Secuencia Molecular , Mutación , Mio-Inositol-1-Fosfato Sintasa/química , Fenotipo , Fotosíntesis , Plantas/genética , Plantas Modificadas Genéticamente , Proteínas Recombinantes/química , Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Cloruro de Sodio/farmacología , Espectrometría de Fluorescencia , Nicotiana/genética , Triptófano/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA