Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nitric Oxide ; 142: 58-68, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38061411

RESUMEN

Statin therapy is a cornerstone in the treatment of systemic vascular diseases. However, statins have failed to translate as therapeutics for pulmonary vascular disease. Early pulmonary vascular disease in the setting of congenital heart disease (CHD) is characterized by endothelial dysfunction, which precedes the more advanced stages of vascular remodeling. These features make CHD an ideal cohort in which to re-evaluate the potential pulmonary vascular benefits of statins, with a focus on endothelial biology. However, it is critical that the full gamut of the pleiotropic effects of statins in the endothelium are uncovered. The purpose of this investigation was to evaluate the therapeutic potential of simvastatin for children with CHD and pulmonary over-circulation, and examine mechanisms of simvastatin action on the endothelium. Our data demonstrate that daily simvastatin treatment preserves endothelial function in our shunt lamb model of pulmonary over-circulation. Further, using pulmonary arterial endothelial cells (PAECs) isolated from Shunt and control lambs, we identified a new mechanism of statin action mediated by increased expression of the endogenous Akt1 inhibitor, C-terminal modifying protein (CTMP). Increases in CTMP were able to decrease the Akt1-mediated mitochondrial redistribution of endothelial nitric oxide synthase (eNOS) which correlated with increased enzymatic coupling, identified by increases in NO generation and decreases in NOS-derived superoxide. Together our data identify a new mechanism by which simvastatin enhances NO signaling in the pulmonary endothelium and identify CTMP as a potential therapeutic target to prevent the endothelial dysfunction that occurs in children born with CHD resulting in pulmonary over-circulation.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Enfermedades Vasculares , Humanos , Niño , Animales , Ovinos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Simvastatina/farmacología , Simvastatina/uso terapéutico , Simvastatina/metabolismo , Células Endoteliales/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Endotelio/metabolismo , Enfermedades Vasculares/metabolismo , Óxido Nítrico/metabolismo , Endotelio Vascular/metabolismo
3.
PLoS Biol ; 16(10): e2005924, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30335746

RESUMEN

The heart exhibits the highest basal oxygen (O2) consumption per tissue mass of any organ in the body and is uniquely dependent on aerobic metabolism to sustain contractile function. During acute hypoxic states, the body responds with a compensatory increase in cardiac output that further increases myocardial O2 demand, predisposing the heart to ischemic stress and myocardial dysfunction. Here, we test the utility of a novel engineered protein derived from the heme-based nitric oxide (NO)/oxygen (H-NOX) family of bacterial proteins as an O2 delivery biotherapeutic (Omniox-cardiovascular [OMX-CV]) for the hypoxic myocardium. Because of their unique binding characteristics, H-NOX-based variants effectively deliver O2 to hypoxic tissues, but not those at physiologic O2 tension. Additionally, H-NOX-based variants exhibit tunable binding that is specific for O2 with subphysiologic reactivity towards NO, circumventing a significant toxicity exhibited by hemoglobin (Hb)-based O2 carriers (HBOCs). Juvenile lambs were sedated, mechanically ventilated, and instrumented to measure cardiovascular parameters. Biventricular admittance catheters were inserted to perform pressure-volume (PV) analyses. Systemic hypoxia was induced by ventilation with 10% O2. Following 15 minutes of hypoxia, the lambs were treated with OMX-CV (200 mg/kg IV) or vehicle. Acute hypoxia induced significant increases in heart rate (HR), pulmonary blood flow (PBF), and pulmonary vascular resistance (PVR) (p < 0.05). At 1 hour, vehicle-treated lambs exhibited severe hypoxia and a significant decrease in biventricular contractile function. However, in OMX-CV-treated animals, myocardial oxygenation was improved without negatively impacting systemic or PVR, and both right ventricle (RV) and left ventricle (LV) contractile function were maintained at pre-hypoxic baseline levels. These data suggest that OMX-CV is a promising and safe O2 delivery biotherapeutic for the preservation of myocardial contractility in the setting of acute hypoxia.


Asunto(s)
Hemo/uso terapéutico , Hipoxia/terapia , Oxígeno/uso terapéutico , Animales , Terapia Biológica/métodos , Corazón/fisiología , Frecuencia Cardíaca/efectos de los fármacos , Ventrículos Cardíacos/efectos de los fármacos , Pulmón , Contracción Muscular/efectos de los fármacos , Contracción Miocárdica/efectos de los fármacos , Miocardio/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico/uso terapéutico , Oxígeno/metabolismo , Consumo de Oxígeno/fisiología , Ingeniería de Proteínas/métodos , Ovinos , Resistencia Vascular/efectos de los fármacos
4.
Am J Respir Cell Mol Biol ; 60(5): 503-514, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30620615

RESUMEN

The natural history of pulmonary vascular disease associated with congenital heart disease (CHD) depends on associated hemodynamics. Patients exposed to increased pulmonary blood flow (PBF) and pulmonary arterial pressure (PAP) develop pulmonary vascular disease more commonly than patients exposed to increased PBF alone. To investigate the effects of these differing mechanical forces on physiologic and molecular responses, we developed two models of CHD using fetal surgical techniques: 1) left pulmonary artery (LPA) ligation primarily resulting in increased PBF and 2) aortopulmonary shunt placement resulting in increased PBF and PAP. Hemodynamic, histologic, and molecular studies were performed on control, LPA, and shunt lambs as well as pulmonary artery endothelial cells (PAECs) derived from each. Physiologically, LPA, and to a greater extent shunt, lambs demonstrated an exaggerated increase in PAP in response to vasoconstricting stimuli compared with controls. These physiologic findings correlated with a pathologic increase in medial thickening in pulmonary arteries in shunt lambs but not in control or LPA lambs. Furthermore, in the setting of acutely increased afterload, the right ventricle of control and LPA but not shunt lambs demonstrates ventricular-vascular uncoupling and adverse ventricular-ventricular interactions. RNA sequencing revealed excellent separation between groups via both principal components analysis and unsupervised hierarchical clustering. In addition, we found hyperproliferation of PAECs from LPA lambs, and to a greater extent shunt lambs, with associated increased angiogenesis and decreased apoptosis in PAECs derived from shunt lambs. A further understanding of mechanical force-specific drivers of pulmonary artery pathology will enable development of precision therapeutics for pulmonary hypertension associated with CHD.


Asunto(s)
Aorta/fisiopatología , Hemodinámica , Arteria Pulmonar/fisiopatología , Enfermedad Cardiopulmonar/fisiopatología , Remodelación Vascular , Animales , Aorta/metabolismo , Aorta/patología , Presión Arterial/fisiología , Proliferación Celular , Oclusión Coronaria/genética , Oclusión Coronaria/metabolismo , Oclusión Coronaria/fisiopatología , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Células Endoteliales/patología , Femenino , Feto , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/patología , Ventrículos Cardíacos/fisiopatología , Humanos , Pulmón/metabolismo , Pulmón/patología , Pulmón/fisiopatología , Óxido Nítrico/metabolismo , Embarazo , Cultivo Primario de Células , Hipertensión Arterial Pulmonar/fisiopatología , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Circulación Pulmonar/fisiología , Enfermedad Cardiopulmonar/congénito , Enfermedad Cardiopulmonar/metabolismo , Enfermedad Cardiopulmonar/patología , Ovinos
5.
Am J Physiol Heart Circ Physiol ; 315(1): H173-H181, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29631374

RESUMEN

Lymphatic abnormalities associated with congenital heart disease are well described, yet the underlying mechanisms remain poorly understood. Using a clinically relevant ovine model of congenital heart disease with increased pulmonary blood flow, we have previously demonstrated that lymphatic endothelial cells (LECs) exposed in vivo to chronically increased pulmonary lymph flow accumulate ROS and have decreased bioavailable nitric oxide (NO). Peroxisome proliferator-activated receptor-γ (PPAR-γ), which abrogates production of cellular ROS by NADPH oxidase, is inhibited by Krüppel-like factor 2 (KLF2), a flow-induced transcription factor. We hypothesized that chronically increased pulmonary lymph flow induces a KLF2-mediated decrease in PPAR-γ and an accumulation of cellular ROS, contributing to decreased bioavailable NO in LECs. To better understand the mechanisms that transduce the abnormal mechanical forces associated with chronically increased pulmonary lymph flow, LECs were isolated from the efferent vessel of the caudal mediastinal lymph node of control ( n = 5) and shunt ( n = 5) lambs. KLF2 mRNA and protein were significantly increased in shunt compared with control LECs, and PPAR-γ mRNA and protein were significantly decreased. In control LECs exposed to shear forces in vitro, we found similar alterations to KLF2 and PPAR-γ expression. In shunt LECs, NADPH oxidase subunit expression was increased, and bioavailable NO was significantly lower. Transfection of shunt LECs with KLF2 siRNA normalized PPAR-γ, ROS, and bioavailable NO. Conversely, pharmacological inhibition of PPAR-γ in control LECs increased ROS equivalent to levels in shunt LECs at baseline. Taken together, these data suggest that one mechanism by which NO-mediated lymphatic function is disrupted after chronic exposure to increased pulmonary lymph flow is through altered KLF2-dependent PPAR-γ signaling, resulting in increased NADPH oxidase activity, accumulation of ROS, and decreased bioavailable NO. NEW & NOTEWORTHY Lymphatic endothelial cells, when exposed in vivo to chronically elevated pulmonary lymph flow in a model of congenital heart disease with increased pulmonary blood flow, demonstrate Krüppel-like factor 2-dependent disrupted peroxisome proliferator-activated receptor-γ signaling that results in the accumulation of reactive oxygen species and decreased bioavailable nitric oxide.


Asunto(s)
Células Endoteliales/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Pulmón/fisiología , Vasos Linfáticos/metabolismo , PPAR gamma/metabolismo , Transducción de Señal , Animales , Células Cultivadas , Femenino , Factores de Transcripción de Tipo Kruppel/genética , Pulmón/metabolismo , Vasos Linfáticos/citología , Vasos Linfáticos/fisiología , Óxido Nítrico/metabolismo , PPAR gamma/genética , Especies Reactivas de Oxígeno/metabolismo , Ovinos
6.
Am J Physiol Heart Circ Physiol ; 315(4): H847-H854, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29906222

RESUMEN

The right ventricular (RV) response to pulmonary arterial hypertension (PAH) is heterogeneous. Most patients have maladaptive changes with RV dilation and RV failure, whereas some, especially patients with PAH secondary to congenital heart disease, have an adaptive response with hypertrophy and preserved systolic function. Mechanisms for RV adaptation to PAH are unknown, despite RV function being a primary determinant of mortality. In our congenital heart disease ovine model with fetally implanted aortopulmonary shunt (shunt lambs), we previously demonstrated an adaptive physiological RV response to increased afterload with hypertrophy. In the present study, we examined small noncoding microRNA (miRNA) expression in shunt RV and characterized downstream effects of a key miRNA. RV tissue was harvested from 4-wk-old shunt and control lambs ( n = 5), and miRNA, mRNA, and protein were quantitated. We found differential expression of 40 cardiovascular-specific miRNAs in shunt RV. Interestingly, this miRNA signature is distinct from models of RV failure, suggesting that miRNAs might contribute to adaptive RV hypertrophy. Among RV miRNAs, miR-199b was decreased in the RV with eventual downregulation of nuclear factor of activated T cells/calcineurin signaling. Furthermore, antifibrotic miR-29a was increased in the shunt RV with a reduction of the miR-29 targets collagen type A1 and type 3A1 and decreased fibrosis. Thus, we conclude that the miRNA signature specific to shunt lambs is distinct from RV failure and drives gene expression required for adaptive RV hypertrophy. We propose that the adaptive RV miRNA signature may serve as a prognostic and therapeutic tool in patients with PAH to attenuate or prevent progression of RV failure and premature death. NEW & NOTEWORTHY This study describes a novel microRNA signature of adaptive right ventricular hypertrophy, with particular attention to miR-199b and miR-29a.


Asunto(s)
Cardiopatías Congénitas/genética , Hipertensión Pulmonar/genética , Hipertrofia Ventricular Derecha/genética , MicroARNs/genética , Transcriptoma , Función Ventricular Derecha/genética , Remodelación Ventricular/genética , Adaptación Fisiológica , Animales , Modelos Animales de Enfermedad , Fibrosis , Perfilación de la Expresión Génica/métodos , Cardiopatías Congénitas/metabolismo , Cardiopatías Congénitas/fisiopatología , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/fisiopatología , Hemodinámica , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/fisiopatología , Hipertrofia Ventricular Derecha/metabolismo , Hipertrofia Ventricular Derecha/fisiopatología , MicroARNs/metabolismo , Oveja Doméstica
7.
Curr Opin Pediatr ; 30(3): 332-337, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29538048

RESUMEN

PURPOSE OF REVIEW: The essential role of the lymphatic system in fluid homeostasis, nutrient transport, and immune trafficking is well recognized; however, there is limited understanding of the mechanisms that regulate lymphatic function, particularly in the setting of critical illness. The lymphatics likely affect disease severity and progression in every condition, from severe systemic inflammatory states to respiratory failure. Here, we review structural and functional disorders of the lymphatic system, both congenital and acquired, as they relate to care of the pediatric patient in the intensive care setting, including novel areas of research into medical and procedural therapeutic interventions. RECENT FINDINGS: The mainstay of current therapies for congenital and acquired lymphatic abnormalities has involved nonspecific medical management or surgical procedures to obstruct or divert lymphatic flow. With the development of dynamic contrast-enhanced magnetic resonance lymphangiography, image-directed percutaneous intervention may largely replace surgery. Because of new insights into the mechanisms that regulate lymphatic biology, pharmacologic inhibitors of mTOR and leukotriene B4 signaling are each in Phase II clinical trials to treat abnormal lymphatic structure and function, respectively. SUMMARY: As our understanding of normal lymphatic biology continues to advance, we will be able to develop novel strategies to support and augment lymphatic function during critical illness and through convalescence.


Asunto(s)
Enfermedades Linfáticas , Niño , Cuidados Críticos/métodos , Enfermedad Crítica , Cardiopatías/complicaciones , Cardiopatías/fisiopatología , Humanos , Enfermedades Linfáticas/diagnóstico , Enfermedades Linfáticas/patología , Enfermedades Linfáticas/fisiopatología , Enfermedades Linfáticas/terapia , Insuficiencia Multiorgánica/complicaciones , Insuficiencia Multiorgánica/fisiopatología
8.
Pediatr Crit Care Med ; 18(10): 931-934, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28723882

RESUMEN

OBJECTIVES: Congenital heart disease with increased pulmonary blood flow results in progressive pulmonary vascular endothelial dysfunction and associated increased perioperative morbidity. Using our ovine model of congenital heart disease with increased pulmonary blood flow, we have previously demonstrated progressive endothelial dysfunction associated with disruption in carnitine homeostasis, mitochondrial dysfunction, decreased nitric oxide signaling, and enhanced reactive oxygen species generation. However, potential alterations in these parameters in patients with congenital heart disease have not been investigated. The objective of this study was to test the hypothesis that children with increased pulmonary blood flow will have evidence of altered carnitine homeostasis, mitochondrial dysfunction, decreased nitric oxide levels, and increased reactive oxygen species generation. DESIGN: A prospective single-center cohort study. SETTING: A tertiary care cardiac ICU/PICU. PATIENTS: Arterial blood samples from 18 patients with congenital heart disease associated with increased pulmonary blood flow (ventricular septal defect), 20 with congenital heart disease without increased pulmonary blood flow (tetralogy of Fallot), and 10 without heart disease (controls) were obtained. INTERVENTIONS: Plasma levels of total carnitine, free carnitine, acylcarnitine, and lactate-to-pyruvate ratios, an indicator of mitochondrial function, were determined and compared. In addition, levels of superoxide and hydrogen peroxide were determined and compared in patients with ventricular septal defect and controls. Statistical analysis was performed using an unpaired t test and analysis of variance. MEASUREMENTS AND MAIN RESULTS: Baseline acylcarnitine levels (25.7 ± 13 vs 12.7 ± 8.3; p < 0.05), the acylcarnitine-to-free carnitine ratio (0.8 ± 0.1 vs 0.3 ± 0.05; p < 0.05), and the lactate-to-pyruvate ratio were higher in ventricular septal defect (27.5 ± 3.8 vs 11.1 ± 4.1, p < 0.05) than tetralogy of Fallot; there were no differences between tetralogy of Fallot and control. Superoxide and H2O2 levels were also higher in ventricular septal defect compared with controls, and NOx levels were lower in ventricular septal defect patients compared with tetralogy of Fallot and controls (p < 0.05). CONCLUSIONS: These data suggest that increased pulmonary blood flow from ventricular septal defect results in altered carnitine and mitochondrial homeostasis, decreased nitric oxide signaling, and increased reactive oxygen species production. These data are consistent with our animal data demonstrating that altered carnitine homeostasis results in mitochondrial dysfunction, increased reactive oxygen species production, and decreased bioavailable nitric oxide. Since disruption of carnitine metabolism may contribute to endothelial dysfunction, carnitine supplementation may attenuate endothelial dysfunction associated with increased pulmonary blood flow and warrants further investigation.


Asunto(s)
Carnitina/sangre , Defectos del Tabique Interventricular/fisiopatología , Homeostasis , Circulación Pulmonar , Biomarcadores/sangre , Velocidad del Flujo Sanguíneo , Estudios de Casos y Controles , Femenino , Defectos del Tabique Interventricular/sangre , Humanos , Lactante , Recién Nacido , Masculino , Mitocondrias/fisiología , Óxido Nítrico/sangre , Estudios Prospectivos , Especies Reactivas de Oxígeno/sangre
9.
Am J Physiol Heart Circ Physiol ; 311(1): H137-45, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27199125

RESUMEN

Associated abnormalities of the lymphatic circulation are well described in congenital heart disease. However, their mechanisms remain poorly elucidated. Using a clinically relevant ovine model of a congenital cardiac defect with chronically increased pulmonary blood flow (shunt), we previously demonstrated that exposure to chronically elevated pulmonary lymph flow is associated with: 1) decreased bioavailable nitric oxide (NO) in pulmonary lymph; and 2) attenuated endothelium-dependent relaxation of thoracic duct rings, suggesting disrupted lymphatic endothelial NO signaling in shunt lambs. To further elucidate the mechanisms responsible for this altered NO signaling, primary lymphatic endothelial cells (LECs) were isolated from the efferent lymphatic of the caudal mediastinal node in 4-wk-old control and shunt lambs. We found that shunt LECs (n = 3) had decreased bioavailable NO and decreased endothelial nitric oxide synthase (eNOS) mRNA and protein expression compared with control LECs (n = 3). eNOS activity was also low in shunt LECs, but, interestingly, inducible nitric oxide synthase (iNOS) expression and activity were increased in shunt LECs, as were total cellular nitration, including eNOS-specific nitration, and accumulation of reactive oxygen species (ROS). Pharmacological inhibition of iNOS reduced ROS in shunt LECs to levels measured in control LECs. These data support the conclusion that NOS signaling is disrupted in the lymphatic endothelium of lambs exposed to chronically increased pulmonary blood and lymph flow and may contribute to decreased pulmonary lymphatic bioavailable NO.


Asunto(s)
Células Endoteliales/enzimología , Cardiopatías Congénitas/enzimología , Linfa/metabolismo , Enfermedades Linfáticas/enzimología , Vasos Linfáticos/enzimología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico/metabolismo , Animales , Animales Recién Nacidos , Células Cultivadas , Modelos Animales de Enfermedad , Regulación hacia Abajo , Células Endoteliales/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Cardiopatías Congénitas/complicaciones , Cardiopatías Congénitas/fisiopatología , Enfermedades Linfáticas/etiología , Enfermedades Linfáticas/fisiopatología , Vasos Linfáticos/efectos de los fármacos , Vasos Linfáticos/fisiopatología , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo III/genética , Circulación Pulmonar , Especies Reactivas de Oxígeno/metabolismo , Ovinos , Transducción de Señal , Estrés Mecánico
10.
Am J Physiol Heart Circ Physiol ; 311(4): H944-H957, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27591215

RESUMEN

Vascular cell hyperproliferation and metabolic reprogramming contribute to the pathophysiology of pulmonary arterial hypertension (PAH). An important cause of PAH in children with congenital heart disease (CHD) is increased pulmonary blood flow (PBF). To better characterize this disease course we studied early changes in pulmonary artery smooth muscle cell (PASMC) proliferation and metabolism using a unique ovine model of pulmonary overcirculation. Consistent with PAH in adults, PASMCs derived from 4-wk-old lambs exposed to increased PBF (shunt) exhibited increased rates of proliferation. While shunt PASMCs also exhibited significant decreases in mitochondrial oxygen consumption, membrane potential, and tricarboxylic acid (TCA) cycle function, suggesting a switch to Warburg metabolism as observed in advanced PAH in adults, they unexpectedly demonstrated decreased glycolytic lactate production, likely due to enhanced flux through the pentose phosphate pathway (PPP). This may be a response to the marked increase in NADPH oxidase (Nox) activity and decreased NADPH/NADP+ ratios observed in shunt PASMCs. Consistent with these findings, pharmacological inhibition of Nox activity preferentially slowed the growth of shunt PASMCs in vitro. Our results therefore indicate that PASMC hyperproliferation is observed early in the setting of pulmonary overcirculation and is accompanied by a unique metabolic profile that is independent of HIF-1α, PDHK1, or increased glycolytic flux. Our results also suggest that Nox inhibition may help prevent pulmonary overcirculation-induced PAH in children born with CHD.


Asunto(s)
Proliferación Celular , Hipertensión Pulmonar/metabolismo , Mitocondrias/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , NADPH Oxidasas/metabolismo , Vía de Pentosa Fosfato , Arteria Pulmonar/metabolismo , Animales , Western Blotting , Células Cultivadas , Modelos Animales de Enfermedad , Espectroscopía de Resonancia por Spin del Electrón , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Glucólisis , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Potencial de la Membrana Mitocondrial , Metabolómica , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/citología , Consumo de Oxígeno , Arteria Pulmonar/citología , Circulación Pulmonar , Especies Reactivas de Oxígeno/metabolismo , Ovinos , Oveja Doméstica , Superóxidos/metabolismo
11.
Am J Physiol Heart Circ Physiol ; 309(1): H157-65, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25934095

RESUMEN

We recently reported superior right ventricle (RV) performance in response to acute afterload challenge in lambs with a model of congenital heart disease with chronic left-to-right cardiac shunts. Compared with control animals, shunt lambs demonstrated increased contractility because of an enhanced Anrep effect (the slow increase in contractility following myocyte stretch). This advantageous physiological response may reflect preservation of a fetal phenotype, since the RV of shunt lambs remains exposed to increased pressure postnatally. Nitric oxide (NO) production by NO synthase (NOS) is activated by myocyte stretch and is a necessary intermediary of the Anrep response. The purpose of this study was to test the hypothesis that NO signaling is increased in the RV of fetal lambs compared with controls and shunt lambs have persistence of this fetal pattern. An 8-mm graft was placed between the pulmonary artery and aorta in fetal lambs (shunt). NOS isoform expression, activity, and association with activating cofactors were determined in fetal tissue obtained during late-gestation and in 4-wk-old juvenile shunt and control lambs. We demonstrated increased RNA and protein expression of NOS isoforms and increased total NOS activity in the RV of both shunt and fetal lambs compared with control. We also found increased NOS activation and association with cofactors in shunt and fetal RV compared with control. These data demonstrate preserved fetal NOS phenotype and NO signaling in shunt RV, which may partially explain the mechanism underlying the adaptive response to increased afterload seen in the RV of shunt lambs.


Asunto(s)
Feto/metabolismo , Cardiopatías Congénitas/metabolismo , Ventrículos Cardíacos/metabolismo , Óxido Nítrico Sintasa/genética , Óxido Nítrico/metabolismo , ARN Mensajero/metabolismo , Animales , Aorta/cirugía , Modelos Animales de Enfermedad , Cardiopatías Congénitas/complicaciones , Cardiopatías Congénitas/fisiopatología , Ventrículos Cardíacos/enzimología , Hipertrofia Ventricular Izquierda/etiología , Hipertrofia Ventricular Izquierda/fisiopatología , Hipertrofia Ventricular Derecha/etiología , Hipertrofia Ventricular Derecha/fisiopatología , Contracción Miocárdica/fisiología , Miocitos Cardíacos , Óxido Nítrico Sintasa/metabolismo , Fenotipo , Arteria Pulmonar/cirugía , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ovinos , Transducción de Señal
12.
J Cell Physiol ; 229(11): 1802-16, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24677020

RESUMEN

Shear stress secondary to increased pulmonary blood flow (PBF) is elevated in some children born with congenital cardiac abnormalities. However, the majority of these patients do not develop pulmonary edema, despite high levels of permeability inducing factors. Previous studies have suggested that laminar fluid shear stress can enhance pulmonary vascular barrier integrity. However, little is known about the mechanisms by which this occurs. Using microarray analysis, we have previously shown that Sox18, a transcription factor involved in blood vessel development and endothelial barrier integrity, is up-regulated in an ovine model of congenital heart disease with increased PBF (shunt). By subjecting ovine pulmonary arterial endothelial cells (PAEC) to laminar flow (20 dyn/cm(2) ), we identified an increase in trans-endothelial resistance (TER) across the PAEC monolayer that correlated with an increase in Sox18 expression. Further, the TER was also enhanced when Sox18 was over-expressed and attenuated when Sox18 expression was reduced, suggesting that Sox18 maintains the endothelial barrier integrity in response to shear stress. Further, we found that shear stress up-regulates the cellular tight junction protein, Claudin-5, in a Sox18 dependent manner, and Claudin-5 depletion abolished the Sox18 mediated increase in TER in response to shear stress. Finally, utilizing peripheral lung tissue of 4 week old shunt lambs with increased PBF, we found that both Sox18 and Claudin-5 mRNA and protein levels were elevated. In conclusion, these novel findings suggest that increased laminar flow protects endothelial barrier function via Sox18 dependent up-regulation of Claudin-5 expression.


Asunto(s)
Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Pulmón/fisiopatología , Factores de Transcripción SOXF/metabolismo , Resistencia al Corte , Estrés Mecánico , Animales , Proliferación Celular , Células Endoteliales/patología , Endotelio Vascular/patología , Endotelio Vascular/fisiopatología , Femenino , Humanos , Pulmón/irrigación sanguínea , Pulmón/metabolismo , Pulmón/patología , Arteria Pulmonar/patología , Ovinos , Proteínas de Uniones Estrechas/metabolismo , Regulación hacia Arriba
13.
Am J Physiol Heart Circ Physiol ; 306(8): H1222-30, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24561861

RESUMEN

Patients with pulmonary hypertension associated with congenital heart disease survive longer with preserved right ventricular (RV) function compared with those with primary pulmonary hypertension. The purpose of this study was to test the hypothesis that superior RV performance can be demonstrated, at baseline and when challenged with increased RV afterload, in lambs with chronic left-to-right cardiac shunts compared with control lambs. A shunt was placed between the pulmonary artery and the aorta in fetal lambs (shunt). RV pressure-volume loops were obtained 4 wk after delivery in shunt and control lambs, before and after increased afterload was applied using pulmonary artery banding (PAB). Baseline stroke volume (8.7 ± 1.8 vs. 15.8 ± 2.7 ml, P = 0.04) and cardiac index (73.0 ± 4.0 vs. 159.2 ± 25.1 ml·min(-1)·kg(-1), P = 0.02) were greater in shunts. After PAB, there was no difference in the change in cardiac index (relative to baseline) between groups; however, heart rate (HR) was greater in controls (168 ± 7.3 vs. 138 ± 6.6 beats/min, P = 0.01), and end-systolic elastance (Ees) was greater in shunts (2.63 vs. 1.31 × baseline, P = 0.02). Control lambs showed decreased mechanical efficiency (71% baseline) compared with shunts. With acute afterload challenge, both controls and shunts maintained cardiac output; however, this was via maladaptive responses in controls, while shunts maintained mechanical efficiency and increased contractility via a proposed enhanced Anrep effect-the second, slow inotropic response in the biphasic ventricular response to increased afterload, a novel finding in the RV. The mechanisms related to these physiological differences may have important therapeutic implications.


Asunto(s)
Cardiopatías Congénitas/fisiopatología , Ventrículos Cardíacos/fisiopatología , Anastomosis Quirúrgica , Animales , Aorta/cirugía , Cardiomegalia , Modelos Animales de Enfermedad , Femenino , Hipertensión Pulmonar/fisiopatología , Contracción Miocárdica , Embarazo , Arteria Pulmonar/cirugía , Ovinos , Volumen Sistólico , Función Ventricular Derecha , Presión Ventricular
14.
Am J Physiol Heart Circ Physiol ; 306(7): H954-62, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24531811

RESUMEN

We have previously shown decreased pulmonary lymph flow in our lamb model of chronically increased pulmonary blood flow, created by the in utero placement of an 8-mm aortopulmonary shunt. The purpose of this study was to test the hypothesis that abnormal lymphatic function in shunt lambs is due to impaired lymphatic endothelial nitric oxide (NO)-cGMP signaling resulting in increased lymphatic vascular constriction and/or impaired relaxation. Thoracic duct rings were isolated from 4-wk-old shunt (n = 7) and normal (n = 7) lambs to determine length-tension properties, vascular reactivity, and endothelial NO synthase protein. At baseline, shunt thoracic duct rings had 2.6-fold higher peak to peak tension and a 2-fold increase in the strength of contractions compared with normal rings (P < 0.05). In response to norepinephrine, shunt thoracic duct rings had a 2.4-fold increase in vascular tone compared with normal rings (P < 0.05) and impaired relaxation in response to the endothelium-dependent dilator acetylcholine (63% vs. 13%, P < 0.05). In vivo, inhaled NO (40 ppm) increased pulmonary lymph flow (normalized for resistance) ∼1.5-fold in both normal and shunt lambs (P < 0.05). Inhaled NO exposure increased bioavailable NO [nitrite/nitrate (NOx); ∼2.5-fold in normal lambs and ∼3.4-fold in shunt lambs] and cGMP (∼2.5-fold in both) in the pulmonary lymph effluent (P < 0.05). Chronic exposure to increased pulmonary blood flow is associated with pulmonary lymphatic endothelial injury that disrupts NO-cGMP signaling, leading to increased resting vasoconstriction, increased maximal strength of contraction, and impaired endothelium-dependent relaxation. Inhaled NO increases pulmonary lymph NOx and cGMP levels and pulmonary lymph flow in normal and shunt lambs. Therapies that augment NO-cGMP signaling within the lymphatic system may provide benefits, warranting further study.


Asunto(s)
Cardiopatías Congénitas/metabolismo , Contracción Muscular , Relajación Muscular , Óxido Nítrico/metabolismo , Arteria Pulmonar/fisiopatología , Circulación Pulmonar , Transducción de Señal , Conducto Torácico/metabolismo , Administración por Inhalación , Animales , Velocidad del Flujo Sanguíneo , GMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Endotelio Linfático/metabolismo , Endotelio Linfático/fisiopatología , Cardiopatías Congénitas/fisiopatología , Linfa/metabolismo , Contracción Muscular/efectos de los fármacos , Relajación Muscular/efectos de los fármacos , Óxido Nítrico/administración & dosificación , Donantes de Óxido Nítrico/farmacología , Norepinefrina/farmacología , S-Nitroso-N-Acetilpenicilamina/farmacología , Ovinos , Transducción de Señal/efectos de los fármacos , Conducto Torácico/efectos de los fármacos , Conducto Torácico/fisiopatología , Factores de Tiempo
15.
Shock ; 62(1): 103-110, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38662597

RESUMEN

ABSTRACT: Hemorrhagic shock is a major source of morbidity and mortality worldwide. While whole blood or blood product transfusion is a first-line treatment, maintaining robust supplies presents significant logistical challenges, particularly in austere environments. OMX is a novel nonhemoglobin (Hb)-based oxygen carrier derived from the H-NOX (heme-nitric oxide/oxygen binding) protein family. Because of their engineered oxygen (O 2 ) affinities, OMX proteins only deliver O 2 to severely hypoxic tissues. Additionally, unlike Hb-based oxygen carriers, OMX proteins do not scavenge nitric oxide in the vasculature. To determine the safety and efficacy of OMX in supporting tissue oxygen delivery and cardiovascular function in a large animal model of controlled hemorrhage, 2-3-week-old lambs were anesthetized, intubated, and mechanically ventilated. Hypovolemic shock was induced by acute hemorrhage to obtain a 50% reduction over 30 min. Vehicle (n = 16) or 400 mg/kg OMX (n = 13) treatment was administered over 15 min. Hemodynamics, arterial blood gases, and laboratory values were monitored throughout the 6-h study. Comparisons between groups were made using t tests, Wilcoxon rank sum test, and Fisher's exact test. Survival was assessed using Kaplan-Meier curves and the log-rank test. We found that OMX was well-tolerated and significantly improved lactate and base deficit trends, and hemodynamic indices ( P < 0.05). Median survival time was greater in the OMX-treated group (4.7 vs. 6.0 h, P < 0.003), and overall survival was significantly increased in the OMX-treated group (25% vs. 85%, P = 0.004). We conclude that OMX is well-tolerated and improves metabolic, hemodynamic, and survival outcomes in an ovine model of controlled hemorrhagic shock.


Asunto(s)
Modelos Animales de Enfermedad , Oxígeno , Choque Hemorrágico , Animales , Choque Hemorrágico/terapia , Ovinos , Hemodinámica , Sustitutos Sanguíneos/uso terapéutico , Sustitutos Sanguíneos/farmacología
16.
J Cell Biochem ; 114(2): 435-447, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22961736

RESUMEN

We have previously shown that acute increases in pulmonary blood flow (PBF) are limited by a compensatory increase in pulmonary vascular resistance (PVR) via an endothelin-1 (ET-1) dependent decrease in nitric oxide synthase (NOS) activity. The mechanisms underlying the reduction in NO signaling are unresolved. Thus, the purpose of this study was to elucidate mechanisms of this ET-1-NO interaction. Pulmonary arterial endothelial cells were acutely exposed to shear stress in the presence or absence of tezosentan, a combined ET(A) /ET(B) receptor antagonist. Shear increased NO(x) , eNOS phospho-Ser1177, and H(2) O(2) and decreased catalase activity; tezosentan enhanced, while ET-1 attenuated all of these changes. In addition, ET-1 increased eNOS phospho-Thr495 levels. In lambs, 4 h of increased PBF decreased H(2) O(2) , eNOS phospho-Ser1177, and NO(X) levels, and increased eNOS phospho-Thr495, phospho-catalase, and catalase activity. These changes were reversed by tezosentan. PEG-catalase reversed the positive effects of tezosentan on NO signaling. In all groups, opening the shunt resulted in a rapid increase in PBF by 30 min. In vehicle- and tezosentan/PEG-catalase lambs, PBF did not change further over the 4 h study period. PVR fell by 30 min in vehicle- and tezosentan-treated lambs, and by 60 min in tezosentan/PEG-catalase-treated lambs. In vehicle- and tezosentan/PEG-catalase lambs, PVR did not change further over the 4 h study period. In tezosentan-treated lambs, PBF continued to increase and LPVR to decrease over the 4 h study period. We conclude that acute increases in PBF are limited by an ET-1 dependent decrease in NO production via alterations in catalase activity, H(2) O(2) levels, and eNOS phosphorylation.


Asunto(s)
Endotelina-1/metabolismo , Óxido Nítrico/metabolismo , Piridinas/administración & dosificación , Flujo Sanguíneo Regional , Tetrazoles/administración & dosificación , Animales , Catalasa/metabolismo , Células Endoteliales , Hemodinámica/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Pulmón/irrigación sanguínea , Pulmón/patología , Pulmón/cirugía , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosforilación , Arteria Pulmonar/citología , Receptor de Endotelina A/administración & dosificación , Flujo Sanguíneo Regional/efectos de los fármacos , Oveja Doméstica/metabolismo , Oveja Doméstica/fisiología , Transducción de Señal/efectos de los fármacos
17.
Pediatr Res ; 73(1): 54-61, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23128423

RESUMEN

BACKGROUND: Pulmonary vascular function is impaired with increased pulmonary blood flow (PBF). We hypothesized that a peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist would mitigate this effect. METHODS: An aorta-to-pulmonary-artery shunt was placed in 11 fetal lambs. Lambs received the PPAR-γ agonist rosiglitazone (RG, 3 mg/kg/d, n = 6) or vehicle (n = 5) for 4 wk. Lung tissue from five normal 4-wk-old lambs was used for comparisons. RESULTS: At 4 wk, pulmonary artery pressure (PAP) and vascular resistance (PVR) decreased with inhaled nitric oxide (NO) in RG- and vehicle-treated shunt lambs. PAP and PVR decreased with acetylcholine (Ach) in RG-treated, but not vehicle-treated, shunt lambs. In vehicle-treated shunt lambs, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity, rac1, superoxide, and 3-nitrotyrosine (3-NT) levels were increased, and Ser1177 endothelial NO synthase (eNOS) protein was decreased as compared with normal lambs. In RG-treated shunt lambs, NOx, Ser1177 eNOS protein, and eNOS activity were increased, and NADPH activity, rac1, superoxide levels, and 3-NT levels were decreased, as compared with vehicle-treated shunt lambs. PPAR-γ protein expression was lower in vehicle-treated shunt lambs than in normal and RG-treated shunt lambs. CONCLUSION: The PPAR-γ agonist RG prevents the loss of agonist-induced endothelium-dependent pulmonary vascular relaxation in lambs with increased PBF, in part, due to decreased oxidative stress and/or increased NO production.


Asunto(s)
PPAR gamma/agonistas , Circulación Pulmonar/efectos de los fármacos , Circulación Pulmonar/fisiología , Tiazolidinedionas/farmacología , Acetilcolina/metabolismo , Análisis de Varianza , Animales , Animales Recién Nacidos , Western Blotting , Hemodinámica , NADPH Oxidasas/metabolismo , Óxido Nítrico/administración & dosificación , Óxido Nítrico/farmacología , PPAR gamma/metabolismo , Presión Esfenoidal Pulmonar/efectos de los fármacos , Presión Esfenoidal Pulmonar/fisiología , Rosiglitazona , Ovinos , Superóxido Dismutasa/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo , Resistencia Vascular/efectos de los fármacos , Resistencia Vascular/fisiología , Proteína de Unión al GTP rac1/metabolismo
18.
Pediatr Res ; 74(1): 39-47, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23628882

RESUMEN

BACKGROUND: In our model of a congenital heart defect (CHD) with increased pulmonary blood flow (PBF; shunt), we have recently shown a disruption in carnitine homeostasis, associated with mitochondrial dysfunction and decreased endothelial nitric oxide synthase (eNOS)/heat shock protein (Hsp)90 interactions that contribute to eNOS uncoupling, increased superoxide levels, and decreased bioavailable nitric oxide (NO). Therefore, we undertook this study to test the hypothesis that L-carnitine therapy would maintain mitochondrial function and NO signaling. METHODS: Thirteen fetal lambs underwent in utero placement of an aortopulmonary graft. Immediately after delivery, lambs received daily treatment with oral L-carnitine or its vehicle. RESULTS: L-Carnitine-treated lambs had decreased levels of acylcarnitine and a reduced acylcarnitine:free carnitine ratio as compared with vehicle-treated shunt lambs. These changes correlated with increased carnitine acetyl transferase (CrAT) protein and enzyme activity and decreased levels of nitrated CrAT. The lactate:pyruvate ratio was also decreased in L-carnitine-treated lambs. Hsp70 protein levels were significantly decreased, and this correlated with increases in eNOS/Hsp90 interactions, NOS activity, and NOx levels, and a significant decrease in eNOS-derived superoxide. Furthermore, acetylcholine significantly decreased left pulmonary vascular resistance only in L-carnitine-treated lambs. CONCLUSION: L-Carnitine therapy may improve the endothelial dysfunction noted in children with CHDs and has important clinical implications that warrant further investigation.


Asunto(s)
Carnitina/farmacología , Endometritis/fisiopatología , Endotelio Vascular/efectos de los fármacos , Pulmón/irrigación sanguínea , Animales , Endotelio Vascular/fisiopatología , Femenino , Proteínas HSP90 de Choque Térmico/metabolismo , Homeostasis , Mitocondrias/efectos de los fármacos , Mitocondrias/fisiología , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Flujo Sanguíneo Regional , Ovinos , Superóxidos/metabolismo
19.
Pulm Pharmacol Ther ; 26(2): 271-80, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23257346

RESUMEN

We have recently shown that the development of endothelial dysfunction in lambs with increased pulmonary blood flow (PBF) correlates with a decrease in peroxisome proliferator activated receptor-γ (PPAR-γ) signaling. Thus, in this study we determined if the loss of PPAR-γ signaling is necessary and sufficient to induce endothelial dysfunction by exposing lambs with normal PBF to the PPAR-γ antagonist, GW9662. Two-weeks of exposure to GW9662 significantly decreased both PPAR-γ protein and activity. In addition, although eNOS protein and nitric oxide metabolites (NO(x)) were significantly increased, endothelial dependent pulmonary vasodilation in response to acetylcholine was attenuated, indicative of endothelial dysfunction. To elucidate whether downstream mediators of vasodilation were impaired we examined soluble guanylate cyclase (sGC)-α and ß subunit protein, cGMP levels, and phosphodiesterase 5 (PDE5) protein and activity, but we found no significant changes. However, we found that peroxynitrite levels were significantly increased in GW9662-treated lambs and this correlated with a significant increase in protein kinase G-1α (PKG-1α) nitration and a reduction in PKG activity. Peroxynitrite is formed by the interaction of NO with superoxide and we found that there was a significant increase in superoxide generation in GW9662-treated lambs. Further, we identified dysfunctional mitochondria as the primary source of the increased superoxide. Finally, we found that the mitochondrial dysfunction was due to a disruption in carnitine metabolism. We conclude that loss of PPAR-γ signaling is sufficient to induce endothelial dysfunction confirming its important role in maintaining a healthy vasculature.


Asunto(s)
Endotelio Vascular/fisiología , PPAR gamma/fisiología , Transducción de Señal/fisiología , Envejecimiento , Anilidas/farmacología , Animales , Carnitina/metabolismo , GMP Cíclico/fisiología , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/antagonistas & inhibidores , Proteínas HSP90 de Choque Térmico/fisiología , Óxido Nítrico Sintasa de Tipo III/análisis , PPAR gamma/antagonistas & inhibidores , Ovinos , Superóxidos/metabolismo
20.
Front Physiol ; 14: 1188824, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37362431

RESUMEN

In a model of congenital heart disease (CHD), we evaluated if chronically increased pulmonary blood flow and pressure were associated with altered respiratory mechanics and gas exchange. Respiratory mechanics and gas exchange were evaluated in 6 shunt, 7 SHAM, and 7 control age-matched lambs. Lambs were anesthetized and mechanically ventilated for 15 min with tidal volume of 10 mL/kg, positive end-expiratory pressure of 5 cmH2O, and inspired oxygen fraction of 0.21. Respiratory system, lung and chest wall compliances (Crs, CL and Ccw, respectively) and resistances (Rrs, RL and Rcw, respectively), and the profile of the elastic pressure-volume curve (%E2) were evaluated. Arterial blood gases and volumetric capnography variables were collected. Comparisons between groups were performed by one-way ANOVA followed by Tukey-Kramer test for normally distributed data and with Kruskal-Wallis test followed by Steel-Dwass test for non-normally distributed data. Average Crs and CL in shunt lambs were 30% and 58% lower than in control, and 56% and 68% lower than in SHAM lambs, respectively. Ccw was 52% and 47% higher and Rcw was 53% and 40% lower in shunt lambs compared to controls and SHAMs, respectively. No difference in %E2 was identified between groups. No difference in respiratory mechanics was observed between control and SHAM lambs. In shunt lambs, Rcw, Crs and CL were decreased and Ccw was increased when compared to control and SHAM lambs. Pulmonary gas exchange did not seem to be impaired in shunt lambs when compared to controls and SHAMs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA