Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 287, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627664

RESUMEN

Salinity stress ranks among the most prevalent stress globally, contributing to soil deterioration. Its negative impacts on crop productivity stem from mechanisms such as osmotic stress, ion toxicity, and oxidative stress, all of which impede plant growth and yield. The effect of cobalt with proline on mitigating salinity impact in radish plants is still unclear. That's why the current study was conducted with aim to explore the impact of different levels of Co and proline on radish cultivated in salt affected soils. There were four levels of cobalt, i.e., (0, 10, 15 and 20 mg/L) applied as CoSO4 and two levels of proline (0 and 0.25 mM), which were applied as foliar. The treatments were applied in a complete randomized design (CRD) with three replications. Results showed that 20 CoSO4 with proline showed improvement in shoot length (∼ 20%), root length (∼ 23%), plant dry weight (∼ 19%), and plant fresh weight (∼ 41%) compared to control. The significant increase in chlorophyll, physiological and biochemical attributes of radish plants compared to the control confirms the efficacy of 20 CoSO4 in conjunction with 10 mg/L proline for mitigating salinity stress. In conclusion, application of cobalt with proline can help to alleviate salinity stress in radish plants. However, multiple location experiments with various levels of cobalt and proline still needs in-depth investigations to validate the current findings.


Asunto(s)
Antioxidantes , Raphanus , Prolina , Cobalto/farmacología , Estrés Salino , Salinidad
2.
BMC Plant Biol ; 24(1): 115, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365582

RESUMEN

Chromium (Cr) stress significantly hinders crop production by disrupting nutrient uptake, impairing plant growth, and contaminating soil, posing a substantial threat to agricultural sustainability. The use of deashed biochar (DAB) and strigolactone can be an effective solution to mitigate this issue. Deashed biochar enhances crop production by improving soil structure, water retention, and nutrient availability while mitigating the bioavailability of toxic substances. Strigolactone boosts plant growth by stimulating root growth, branching, shoot formation, and overall plant physiology. Nevertheless, the scientific rationale behind their collective use as an amendment to counter Cr stress remains to be substantiated. Therefore, in this study, a blend of DAB and strigolactone was employed as additives in radish cultivation, both in the absence of Cr stress and under the influence of 200Cr stress. Four treatments, i.e., 0, 20µM Strigolactone, DAB, and 20µM Strigolactone + DAB, were applied in four replications following a completely randomized design. Results demonstrate that 20µM Strigolactone + DAB produced significant improvement in radish shoot length (27.29%), root length (45.60%), plant fresh weight (33.25%), and plant dry weight (78.91%), compared to the control under Cr stress. Significant enrichment in radish chlorophyll a (20.41%), chlorophyll b (58.53%), and total chlorophyll (31.54%) over the control under Cr stress, prove the efficacy of 20µM Strigolactone + DAB treatment. In conclusion, 20µM Strigolactone + DAB is the recommended amendment for mitigating Cr stress in radish. Farmers should consider using Strigolactone + DAB amendments to combat Cr stress and enhance radish growth, contributing to a more resilient agricultural ecosystem.


Asunto(s)
Compuestos Heterocíclicos con 3 Anillos , Lactonas , Raphanus , Contaminantes del Suelo , Cromo , Clorofila A , Ecosistema , Carbón Orgánico , Suelo/química
3.
BMC Plant Biol ; 24(1): 209, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38519997

RESUMEN

Salinity stress can significantly delay plant growth. It can disrupt water and nutrient uptake, reducing crop yields and poor plant health. The use of strigolactone can be an effective technique to overcome this issue. Strigolactone enhances plant growth by promoting root development and improvement in physiological attributes. The current pot study used strigolactone to amend chili under no salinity and salinity stress environments. There were four treatments, i.e., 0, 10µM strigolactone, 20µM strigolactone and 30µM strigolactone. All treatments were applied in four replications following a completely randomized design (CRD). Results showed that 20µM strigolactone caused a significant increase in chili plant height (21.07%), dry weight (33.60%), fruit length (19.24%), fruit girth (35.37%), and fruit yield (60.74%) compared to control under salinity stress. Significant enhancement in chili chlorophyll a (18.65%), chlorophyll b (43.52%), and total chlorophyll (25.09%) under salinity stress validated the effectiveness of 20µM strigolactone application as treatment over control. Furthermore, improvement in nitrogen, phosphorus, and potassium concentration in leaves confirmed the efficient functioning of 20µM strigolactone compared to other concentrations under salinity stress. The study concluded that 20µM strigolactone is recommended for mitigating salinity stress in chili plants. Growers are advised to apply 20µM strigolactone to enhance their chili production under salinity stress.


Asunto(s)
Capsicum , Compuestos Heterocíclicos con 3 Anillos , Alcanfor , Clorofila A , Lactonas , Mentol , Salinidad , Estrés Salino
4.
BMC Plant Biol ; 24(1): 363, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724910

RESUMEN

Salinity stress is a significant challenge in agricultural production. When soil contains high salts, it can adversely affect plant growth and productivity due to the high concentration of soluble salts in the soil water. To overcome this issue, foliar applications of methyl jasmonate (MJ) and gibberellic acid (GA3) can be productive amendments. Both can potentially improve the plant's growth attributes and flowering, which are imperative in improving growth and yield. However, limited literature is available on their combined use in canola to mitigate salinity stress. That's why the current study investigates the impact of different levels of MJ (at concentrations of 0.8, 1.6, and 3.2 mM MJ) and GA3 (0GA3 and 5 mg/L GA3) on canola cultivated in salt-affected soils. Applying all the treatments in four replicates. Results indicate that the application of 0.8 mM MJ with 5 mg/L GA3 significantly enhances shoot length (23.29%), shoot dry weight (24.77%), number of leaves per plant (24.93%), number of flowering branches (26.11%), chlorophyll a (31.44%), chlorophyll b (20.28%) and total chlorophyll (27.66%) and shoot total soluble carbohydrates (22.53%) over control. Treatment with 0.8 mM MJ and 5 mg/L GA3 resulted in a decrease in shoot proline (48.17%), MDA (81.41%), SOD (50.59%), POD (14.81%) while increase in N (10.38%), P (15.22%), and K (8.05%) compared to control in canola under salinity stress. In conclusion, 0.8 mM MJ + 5 mg/L GA3 can improve canola growth under salinity stress. More investigations are recommended at the field level to declare 0.8 mM MJ + 5 mg/L GA3 as the best amendment for alleviating salinity stress in different crops.


Asunto(s)
Acetatos , Antioxidantes , Brassica napus , Ciclopentanos , Giberelinas , Oxilipinas , Reguladores del Crecimiento de las Plantas , Suelo , Ciclopentanos/farmacología , Oxilipinas/farmacología , Brassica napus/crecimiento & desarrollo , Brassica napus/efectos de los fármacos , Brassica napus/metabolismo , Giberelinas/metabolismo , Giberelinas/farmacología , Antioxidantes/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Acetatos/farmacología , Suelo/química , Clorofila/metabolismo , Estrés Salino/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Nutrientes/metabolismo
5.
BMC Plant Biol ; 22(1): 384, 2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35918648

RESUMEN

BACKGROUND: Farsetia hamiltonii Royle is a medicinally important annual plant from the Cholistan desert that belongs to the tribe Anastaticeae and clade C of the Brassicaceae family. We provide the entire chloroplast sequence of F.hamiltonii, obtained using the Illumina HiSeq2500 and paired-end sequencing. We compared F. hamiltonii to nine other clade C species, including Farsetia occidentalis, Lobularia libyca, Notoceras bicorne, Parolinia ornata, Morettia canescens, Cochlearia borzaeana, Megacarpaea polyandra, Biscutella laevigata, and Iberis amara. We conducted phylogenetic research on the 22 Brassicaceae species, which included members from 17 tribes and six clades. RESULTS: The chloroplast genome sequence of F.hamiltonii of 154,802 bp sizes with 36.30% GC content and have a typical structure comprised of a Large Single Copy (LSC) of 83,906 bp, a Small Single Copy (SSC) of 17,988 bp, and two copies of Inverted Repeats (IRs) of 26,454 bp. The genomes of F. hamiltonii and F. occidentalis show shared amino acid frequencies and codon use, RNA editing sites, simple sequence repeats, and oligonucleotide repeats. The maximum likelihood tree revealed Farsetia as a monophyletic genus, closely linked to Morettia, with a bootstrap score of 100. The rate of transversion substitutions (Tv) was higher than the rate of transition substitutions (Ts), resulting in Ts/Tv less than one in all comparisons with F. hamiltonii, indicating that the species are closely related. The rate of synonymous substitutions (Ks) was greater than non-synonymous substitutions (Ka) in all comparisons with F. hamiltonii, with a Ka/Ks ratio smaller than one, indicating that genes underwent purifying selection. Low nucleotide diversity values range from 0.00085 to 0.08516, and IR regions comprise comparable genes on junctions with minimal change, supporting the conserved status of the selected chloroplast genomes of the clade C of the Brassicaceae family. We identified ten polymorphic regions, including rps8-rpl14, rps15-ycf1, ndhG-ndhI, psbK-psbI, ccsA-ndhD, rpl36-rps8, petA-psbJ, ndhF-rpl32, psaJ-rpl3, and ycf1 that might be exploited to construct genuine and inexpensive to solve taxonomic discrepancy and understand phylogenetic relationship amongst Brassicaceae species. CONCLUSION: The entire chloroplast sequencing of F. hamiltonii sheds light on the divergence of genic chloroplast sequences among members of the clade C. When other Farsetia species are sequenced in the future, the full F. hamiltonii chloroplast will be used as a source for comprehensive taxonomical investigations of the genus. The comparison of F. hamiltonii and other clade C species adds new information to the phylogenetic data and evolutionary processes of the clade. The results of this study will also provide further molecular uses of clade C chloroplasts for possible plant genetic modifications and will help recognise more Brassicaceae family species.


Asunto(s)
Brassicaceae , Genoma del Cloroplasto , Brassicaceae/genética , Cloroplastos/genética , Codón , Genoma del Cloroplasto/genética , Filogenia
6.
Arch Microbiol ; 204(11): 665, 2022 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-36209456

RESUMEN

Bacterial pathogenesis-associated characteristics such as biofilm formation, synthesis of hydrolyzing enzymes, and toxins are regulated by Acyl Homoserine Lactones (AHLs), small peptides and diffusing signal factors (DSF). Lelliottia amnigena is gram negative bacteria and its pathogenicity is regulated by the luxR and luxI class of quorum sensing. The signaling molecules and their concentrations are essential for the virulence of the pathogenic bacterium. To suppresses the pathogenicity; the concentration of signalling molecules must be controlled or degraded. The lactonase have the ability to hydrolyze lactones of different chain length. The present study deals with a newer approach to control the pathogenesis of Lelliottia amnigena through isolation and characterization of Aiia lactonase from Bacillus cereus RC1. Aiia lactonase specific primers were used to amplify the gene, and the sequence thus obtained was submitted to the Genbank database under accession # OK643884.1. The gene was cloned in pBE-S shuttle vector and transformed in the recombinant host. The expressed and purified protein had a molecular weight of 28.00 KDa and exhibited its optimum activity at 37℃ by inhibiting the violacein pigment of the monitor strain Chromobacterium violaceum MTCC 2656. The proteinaceous nature of the purified molecule was confirmed by incubating it in the presence of proteinase K for 1 h. The activity of the pathogenesis-related protein, polygalacturonase was drastically reduced in the presence of the purified Aiia protein. The purified protein also showed a zone of inhibition when plated together with Lelliottia amnigena RCE (MZ712952.1). Searches of the Conserved Domain Database suggested that this protein belonged to the Metallo-beta-lactamase superfamily and is closely related to Aiia from B. thuringiensis serovar kurstaki. Modeling of the protein structure was done using I-TASSER; a C-score of 0.55 suggested that the model was of good quality. To be used commercially, this recombinant protein needs to be purified at an industrial scale; it can then be used to repress the growth of soft rot causing bacteria in horticultural crops during their storage period.


Asunto(s)
Acil-Butirolactonas , Bacillus cereus , Acil-Butirolactonas/metabolismo , Bacillus cereus/genética , Bacillus cereus/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Clonación Molecular , Endopeptidasa K , Enterobacteriaceae , Poligalacturonasa , Percepción de Quorum/genética , Proteínas Recombinantes/genética , Transactivadores/genética , beta-Lactamasas
7.
J Environ Manage ; 307: 114521, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35092889

RESUMEN

Toxicity induced by a high concentration of lead (Pb) can significantly decrease plant's growth, gas exchange, and yield attributes. It can also causes cancer in humans. The use of organic amendments, especially biochar, can alleviate Pb toxicity in different crops. The application of biochar can decrease the uptake of Pb by plant roots. However, the high pH of thermo-pyrolyzed biochar makes it an unfit amendment for high pH soils. As Pb is an acute toxin and its uptake in rice is a major issue, the current experiment was conducted to explore the efficacy of chemically produced acidified carbon (AC) to mitigate Pb toxicity in rice. Lead was introduced in concentrations of 0, 15, and 30 mg kg-1 soil in combination with 0, 0.5, and 1% AC, underground water (GW) and wastewater (WW) in rice plants. The addition of 1% AC significantly improved the plant height (52 and 7%), spike length (66 and 50%), 1000 grains weight (144 and 71%) compared to 0% AC under GW and WW irrigation, respectively at 30 mg Pb kg-1 soil (30 Pb) toxicity. Similar improvements in the photosynthetic rate, transpiration rate and stomatal conductance also validated the effectiveness of 1% AC over 0% AC. A significant decrease in electrolyte leakage and plant Pb concentration by application of 0.5 and 1% AC validates the effectiveness of these treatments for mitigating 30 Pb toxicity in rice compared to 0% AC under GW or WW irrigation. In conclusion, 1% AC is an effective amendment in alleviating Pb toxicity in rice irrigated with GW or WW at 30 Pb.


Asunto(s)
Agua Subterránea , Oryza , Contaminantes del Suelo , Carbono , Carbón Orgánico , Humanos , Plomo/toxicidad , Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad , Aguas Residuales
8.
BMC Plant Biol ; 21(1): 303, 2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34187364

RESUMEN

BACKGROUND: Organic mulches are widely used in crop production systems. Due to their benefits in improving soil fertility, retention of soil moisture and weed control. Field experiments were conducted during wheat growing seasons of 2018-2019 and 2019-2020 to evaluate the effects of Jatropha leaves mulch on the growth of wheat varieties 'Wadan-17' (rainfed) and 'Pirsabaq-2013' (irrigated) under well irrigated and water stress conditions (non-irrigated maintaining 40% soil field capacity). Jatropha mulch was applied to the soil surface at 0, 1, 3 and 5 Mg ha-1 before sowing grains in the field. Under conditions of water stress, Jatropha mulch significantly maintained the soil moisture content necessary for normal plant growth. RESULTS: We noted a decrease in plant height, shoot and root fresh/dry weight, leaf area, leaf relative water content (LRWC), chlorophyll, and carotenoid content due to water stress. However, water stress caused an increase in leaf and root phenolics content, leaf soluble sugars and electrolytes leakage. We observed that Jatropha mulch maintained LRWC, plant height, shoot and root fresh/dry weight, leaf area and chlorophyll content under water stress. Moreover, water stress adverse effects on leaf soluble sugar content and electrolyte leakage were reversed to normal by Jatropha mulch. CONCLUSION: Therefore, it may be concluded that Jatropha leaves mulch will minimize water stress adverse effects on wheat by maintaining soil moisture and plant water status.


Asunto(s)
Producción de Cultivos/métodos , Jatropha , Hojas de la Planta , Triticum/crecimiento & desarrollo , Metabolismo de los Hidratos de Carbono , Carotenoides/metabolismo , Clorofila/metabolismo , Deshidratación , Raíces de Plantas/crecimiento & desarrollo , Suelo , Triticum/metabolismo , Triticum/fisiología
9.
Molecules ; 26(10)2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-34064563

RESUMEN

Amylase (EC 3.2.1.1) enzyme has gained tremendous demand in various industries, including wastewater treatment, bioremediation and nano-biotechnology. This compels the availability of enzyme in greater yields that can be achieved by employing potential amylase-producing cultures and statistical optimization. The use of Plackett-Burman design (PBD) that evaluates various medium components and having two-level factorial designs help to determine the factor and its level to increase the yield of product. In the present work, we are reporting the screening of amylase-producing marine bacterial strain identified as Bacillus sp. H7 by 16S rRNA. The use of two-stage statistical optimization, i.e., PBD and response surface methodology (RSM), using central composite design (CCD) further improved the production of amylase. A 1.31-fold increase in amylase production was evident using a 5.0 L laboratory-scale bioreactor. Statistical optimization gives the exact idea of variables that influence the production of enzymes, and hence, the statistical approach offers the best way to optimize the bioprocess. The high catalytic efficiency (kcat/Km) of amylase from Bacillus sp. H7 on soluble starch was estimated to be 13.73 mL/s/mg.


Asunto(s)
Amilasas/biosíntesis , Bacillus/enzimología , Bacillus/aislamiento & purificación , Biotecnología/métodos , Agua de Mar/microbiología , Estadística como Asunto , Amilasas/metabolismo , Análisis de Varianza , Bacillus/efectos de los fármacos , Bacillus/crecimiento & desarrollo , Reactores Biológicos , Concentración de Iones de Hidrógeno , Cinética , Filogenia , Reproducibilidad de los Resultados , Cloruro de Sodio/farmacología , Solubilidad , Almidón/química
10.
Ecotoxicol Environ Saf ; 168: 324-329, 2019 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-30390531

RESUMEN

Secondary plant metabolites play an important role in providing protection to plants against herbivore insect pests. Keeping in view the increasing importance of biopesticides, the crude extracts from different plants are being investigated for insecticidal activities. Alpinia galanga, a medicinal plant belonging to family Zingiberaceae exhibits a wide range of biological activities. In the present study, crude extracts of A. galanga and its purified compounds i.e. 1'-acetoxychavicol acetate and galangin were evaluated for their effect on various nutritional parameters of Spodoptera litura (Fab.). All the extracts exhibited a significant influence on relative growth and consumption rates as well as efficiency of conversion of ingested and digested food. Ethyl acetate extract was found to be the most effective causing significant reduction in values of RGR, RCR, ECI and ECD of S. litura larvae in comparison to control larvae. The highest concentration of the ethyl acetate extract (2500 ppm) resulted in 44.95%, 10.99%, 38.08% and 37.04% decrease respectively in RGR, RCR, ECI and ECD in comparison to control. The purified compounds also showed inhibitory effects on various nutritional parameters. 1'-Acetoxychavicol acetate was found to be more effective in comparison to galangin.


Asunto(s)
Alpinia/química , Fenómenos Fisiológicos de la Nutrición/efectos de los fármacos , Extractos Vegetales/farmacología , Spodoptera/efectos de los fármacos , Animales , Alcoholes Bencílicos/farmacología , Agentes de Control Biológico/farmacología , Flavonoides/farmacología , Larva/efectos de los fármacos , Plantas Medicinales/química , Spodoptera/metabolismo
11.
Mol Microbiol ; 106(5): 815-831, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28941233

RESUMEN

Metacaspases primarily associate with induction and execution of programmed cell death in protozoa, fungi and plants. In the recent past, several studies have also demonstrated cellular functions of metacaspases other than cell death in different organisms including yeast and protozoa. This study shows similar dual function for the only metacaspase of a biotrophic phytopathogen, Ustilago maydis. In addition to a conventional role in the induction of cell death, Mca1 has been demonstrated to play a key role in maintaining the quality of the cellular proteome. On one hand, Mca1 could be shown to bring about apoptosis-like phenotypic changes in U. maydis on exposure to oxidative stress, on the other hand, the protein was found to regulate cellular protein quality control. U. maydis metacaspase has been found to remain closely associated with the insoluble intracellular protein aggregates, generated during an event of stress exposure to the fungus. The study, therefore, provides direct evidence for a role of U. maydis metacaspase in the clearance of the stress-induced intracellular insoluble protein aggregates. Furthermore, host infection assays with mca1 deletion strain also revealed a role of the protein in the virulence of the fungus.


Asunto(s)
Caspasas/metabolismo , Ustilago/metabolismo , Secuencia de Aminoácidos , Apoptosis , Muerte Celular , Proteasas de Cisteína/metabolismo , Proteínas Fúngicas/metabolismo , Filogenia , Enfermedades de las Plantas/microbiología , Patología de Plantas , Agregado de Proteínas , Ustilago/genética , Virulencia
15.
Phys Rev Lett ; 114(15): 151302, 2015 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-25933304

RESUMEN

We present evidence of the gravitational lensing of the cosmic microwave background by 10(13) solar mass dark matter halos. Lensing convergence maps from the Atacama Cosmology Telescope Polarimeter (ACTPol) are stacked at the positions of around 12 000 optically selected CMASS galaxies from the SDSS-III/BOSS survey. The mean lensing signal is consistent with simulated dark matter halo profiles and is favored over a null signal at 3.2σ significance. This result demonstrates the potential of microwave background lensing to probe the dark matter distribution in galaxy group and galaxy cluster halos.

16.
Heliyon ; 10(1): e24022, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38234915

RESUMEN

Cellulose degradation is a critical process in soil ecosystems, playing a vital role in nutrient cycling and organic matter decomposition. Enzymatic degradation of cellulosic biomass is the most sustainable and green method of producing liquid biofuel. It has gained intensive research interest with future perspective as the majority of terrestrial lignocellulose biomass has a great potential to be used as a source of bioenergy. However, the recalcitrant nature of lignocellulose limits its use as a source of energy. Noteworthy enough, enzymatic conversion of cellulose biomass could be a leading future technology. Fungal enzymes play a central role in cellulose degradation. Our understanding of fungal cellulases has substantially redirected in the past few years with the discovery of a new class of enzymes and Cellulosome. Efforts have been made from time to time to develop an economically viable method of cellulose degradation. This review provides insights into the current state of knowledge regarding cellulose degradation in soil and identifies areas where further research is needed.

17.
Sci Rep ; 14(1): 14270, 2024 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902414

RESUMEN

Drought stress can have negative impacts on crop productivity. It triggers the accumulation of reactive oxygen species, which causes oxidative stress. Limited water and nutrient uptake under drought stress also decreases plant growth. Using cobalt and fulvic acid with biochar in such scenarios can effectively promote plant growth. Cobalt (Co) is a component of various enzymes and co-enzymes. It can increase the concentration of flavonoids, total phenols, antioxidant enzymes (peroxidase, catalase, and polyphenol oxidase) and proline. Fulvic acid (FA), a constituent of soil organic matter, increases the accessibility of nutrients to plants. Biochar (BC) can enhance soil moisture retention, nutrient uptake, and plant productivity during drought stress. That's why the current study explored the influence of Co, FA and BC on chili plants under drought stress. This study involved 8 treatments, i.e., control, 4 g/L fulvic acid (4FA), 20 mg/L cobalt sulfate (20CoSO4), 4FA + 20CoSO4, 0.50%MFWBC (0.50 MFWBC), 4FA + 0.50MFWBC, 20CoSO4 + 0.50MFWBC, 4FA + 20CoSO4 + 0.50MFWBC. Results showed that 4 g/L FA + 20CoSO4 with 0.50MFWBC caused an increase in chili plant height (23.29%), plant dry weight (28.85%), fruit length (20.17%), fruit girth (21.41%) and fruit yield (25.13%) compared to control. The effectiveness of 4 g/L FA + 20CoSO4 with 0.50MFWBC was also confirmed by a significant increase in total chlorophyll contents, as well as nitrogen (N), phosphorus (P), and potassium (K) in leaves over control. In conclusion4g/L, FA + 20CoSO4 with 0.50MFWBC can potentially improve the growth of chili cultivated in drought stress. It is suggested that 4 g/L FA + 20CoSO4 with 0.50MFWBC be used to alleviate drought stress in chili plants.


Asunto(s)
Benzopiranos , Capsicum , Carbón Orgánico , Cobalto , Sequías , Mangifera , Capsicum/crecimiento & desarrollo , Capsicum/metabolismo , Capsicum/fisiología , Cobalto/metabolismo , Cobalto/análisis , Mangifera/crecimiento & desarrollo , Mangifera/metabolismo , Frutas/metabolismo , Frutas/crecimiento & desarrollo , Estrés Fisiológico , Suelo/química
18.
Sci Rep ; 14(1): 12988, 2024 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844823

RESUMEN

Salinity stress significantly hinders plant growth by disrupting osmotic balance and inhibiting nutrient uptake, leading to reduced biomass and stunted development. Using saponin (SAP) and boron (B) can effectively overcome this issue. Boron decreases salinity stress by stabilizing cell walls and membranes, regulating ion balance, activating antioxidant enzymes, and enhancing water uptake. SAP are bioactive compounds that have the potential to alleviate salinity stress by improving nutrient uptake, modulating plant hormone levels, promoting root growth, and stimulating antioxidant activity. That's why the current study was planned to use a combination of SAP and boron as amendments to mitigate salinity stress in sweet potatoes. Four levels of SAP (0%, 0.1%, 0.15%, and 0.20%) and B (control, 5, 10, and 20 mg/L B) were applied in 4 replications following a completely randomized design. Results illustrated that 0.15% SAP with 20 mg/L B caused significant enhancement in sweet potato vine length (13.12%), vine weight (12.86%), root weight (8.31%), over control under salinity stress. A significant improvement in sweet potato chlorophyll a (9.84%), chlorophyll b (20.20%), total chlorophyll (13.94%), photosynthetic rate (17.69%), transpiration rate (16.03%), and stomatal conductance (17.59%) contrast to control under salinity stress prove the effectiveness of 0.15% SAP + 20 mg/L B treatment. In conclusion, 0.15% SAP + 20 mg/L B is recommended to mitigate salinity stress in sweet potatoes.


Asunto(s)
Boro , Ipomoea batatas , Estrés Salino , Saponinas , Ipomoea batatas/crecimiento & desarrollo , Boro/farmacología , Saponinas/farmacología , Estrés Salino/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/efectos de los fármacos , Clorofila/metabolismo , Sinergismo Farmacológico , Salinidad
19.
Sci Rep ; 14(1): 11042, 2024 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745058

RESUMEN

Nickel (Ni) is a heavy metal that adversely affects the growth of different crops by inducing oxidative stress and nutrient imbalance. The role of rhizobacteria (RB) is vital to resolve this issue. They can promote root growth and facilitate the uptake of water and nutrients, resulting in better crop growth. On the other hand, γ-aminobutyric acid (GABA) can maintain the osmotic balance and scavenge the reactive oxygen species under stress conditions. However, the combined effect of GABA and RB has not been thoroughly explored to alleviate Ni toxicity, especially in fenugreek plants. Therefore, in the current pot study, four treatments, i.e., control, A. fabrum (RB), 0.40 mM GABA, and 0.40 mM GABA + RB, were applied under 0Ni and 80 mg Ni/kg soil (80Ni) stress. Results showed that RB + 0.40 mM GABA caused significant improvements in shoot length (~ 13%), shoot fresh weight (~ 47%), shoot dry weight (~ 47%), root length (~ 13%), root fresh weight (~ 60%), and root dry weight (~ 15%) over control under 80 Ni toxicity. A significant enhancement in total chlorophyll (~ 14%), photosynthetic rate (~ 17%), stomatal CO2 concentration (~ 19%), leaves and roots N (~ 10 and ~ 37%), P (~ 18 and ~ 7%) and K (~ 11 and ~ 30%) concentrations, while a decrease in Ni (~ 83 and ~ 49%) concentration also confirmed the effectiveness of RB + 0.40 mM GABA than control under 80Ni. In conclusion, fabrum + 0.40 mM GABA can potentially alleviate the Ni toxicity in fenugreek plants. The implications of these findings extend to agricultural practices, environmental remediation efforts, nutritional security, and ecological impact. Further research is recommended to elucidate the underlying mechanisms, assess long-term effects, and determine the practical feasibility of using A. fabrum + 0.40GABA to improve growth in different crops under Ni toxicity.


Asunto(s)
Níquel , Trigonella , Ácido gamma-Aminobutírico , Níquel/toxicidad , Ácido gamma-Aminobutírico/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Contaminantes del Suelo/toxicidad
20.
Sci Rep ; 14(1): 12854, 2024 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834735

RESUMEN

Salinity stress significantly impacts crops, disrupting their water balance and nutrient uptake, reducing growth, yield, and overall plant health. High salinity in soil can adversely affect plants by disrupting their water balance. Excessive salt levels can lead to dehydration, hinder nutrient absorption, and damage plant cells, ultimately impairing growth and reducing crop yields. Gallic acid (GA) and zinc ferrite (ZnFNP) can effectively overcome this problem. GA can promote root growth, boost photosynthesis, and help plants absorb nutrients efficiently. However, their combined application as an amendment against drought still needs scientific justification. Zinc ferrite nanoparticles possess many beneficial properties for soil remediation and medical applications. That's why the current study used a combination of GA and ZnFNP as amendments to wheat. There were 4 treatments, i.e., 0, 10 µM GA, 15 µM GA, and 20 µM GA, without and with 5 µM ZnFNP applied in 4 replications following a completely randomized design. Results exhibited that 20 µM GA + 5 µM ZnFNP caused significant improvement in wheat shoot length (28.62%), shoot fresh weight (16.52%), shoot dry weight (11.38%), root length (3.64%), root fresh weight (14.72%), and root dry weight (9.71%) in contrast to the control. Significant enrichment in wheat chlorophyll a (19.76%), chlorophyll b (25.16%), total chlorophyll (21.35%), photosynthetic rate (12.72%), transpiration rate (10.09%), and stomatal conductance (15.25%) over the control validate the potential of 20 µM GA + 5 µM ZnFNP. Furthermore, improvement in N, P, and K concentration in grain and shoot verified the effective functioning of 20 µM GA + 5 µM ZnFNP compared to control. In conclusion, 20 µM GA + 5 µM ZnFNP can potentially improve the growth, chlorophyll contents and gas exchange attributes of wheat cultivated in salinity stress. More investigations are suggested to declare 20 µM GA + 5 µM ZnFNP as the best amendment for alleviating salinity stress in different cereal crops.


Asunto(s)
Compuestos Férricos , Ácido Gálico , Estrés Salino , Triticum , Triticum/crecimiento & desarrollo , Triticum/efectos de los fármacos , Triticum/metabolismo , Ácido Gálico/metabolismo , Zinc/metabolismo , Fotosíntesis/efectos de los fármacos , Nanopartículas/química , Clorofila/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Salinidad , Suelo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA