Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Int J Mol Sci ; 21(7)2020 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-32272708

RESUMEN

The RNA interference (RNAi) machinery is an essential component of the cell, regulating miRNA biogenesis and function. RNAi complexes were thought to localize either in the nucleus, such as the microprocessor, or in the cytoplasm, such as the RNA-induced silencing complex (RISC). We recently revealed that the core microprocessor components DROSHA and DGCR8, as well as the main components of RISC, including Ago2, also associate with the apical adherens junctions of well-differentiated cultured epithelial cells. Here, we demonstrate that the localization of the core RNAi components is specific and predominant at apical areas of cell-cell contact of human normal colon epithelial tissues and normal primary colon epithelial cells. Importantly, the apical junctional localization of RNAi proteins is disrupted or lost in human colon tumors and in poorly differentiated colon cancer cell lines, correlating with the dysregulation of the adherens junction component PLEKHA7. We show that the restoration of PLEKHA7 expression at adherens junctions of aggressively tumorigenic colon cancer cells restores the junctional localization of RNAi components and suppresses cancer cell growth in vitro and in vivo. In summary, this work identifies the apical junctional localization of the RNAi machinery as a key feature of the differentiated colonic epithelium, with a putative tumor suppressing function.


Asunto(s)
Uniones Adherentes/metabolismo , Colon/metabolismo , Células Epiteliales/metabolismo , Interferencia de ARN/fisiología , Animales , Carcinogénesis/metabolismo , Línea Celular , Proliferación Celular/fisiología , Neoplasias del Colon/metabolismo , Citoplasma/metabolismo , Femenino , Humanos , Mucosa Intestinal/metabolismo , Masculino , Ratones , MicroARNs/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribonucleasa III/metabolismo
2.
Int J Mol Sci ; 20(11)2019 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-31195621

RESUMEN

E-cadherin is the core component of epithelial adherens junctions, essential for tissue development, differentiation, and maintenance. It is also fundamental for tissue barrier formation, a critical function of epithelial tissues. The colon or large intestine is lined by an epithelial monolayer that encompasses an E-cadherin-dependent barrier, critical for the homeostasis of the organ. Compromised barriers of the colonic epithelium lead to inflammation, fibrosis, and are commonly observed in colorectal cancer. In addition to its architectural role, E-cadherin is also considered a tumor suppressor in the colon, primarily a result of its opposing function to Wnt signaling, the predominant driver of colon tumorigenesis. Beyond these well-established traditional roles, several studies have portrayed an evolving role of E-cadherin as a signaling epicenter that regulates cell behavior in response to intra- and extra-cellular cues. Intriguingly, these recent findings also reveal tumor-promoting functions of E-cadherin in colon tumorigenesis and new interacting partners, opening future avenues of investigation. In this Review, we focus on these emerging aspects of E-cadherin signaling, and we discuss their implications in colon biology and disease.


Asunto(s)
Cadherinas/química , Cadherinas/metabolismo , Colon/metabolismo , Enfermedades del Colon/metabolismo , Homeostasis , Transducción de Señal , Animales , Colon/microbiología , Enfermedades del Colon/microbiología , Microbioma Gastrointestinal , Humanos
3.
bioRxiv ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38853930

RESUMEN

Epithelial adherens junctions (AJs) are cell-cell adhesion complexes that are influenced by tissue mechanics, such as those emanating from the extracellular matrix (ECM). Here, we introduce a mechanism whereby epithelial AJs can also regulate the ECM. We show that the AJ component PLEKHA7 regulates levels and activity of the key ECM remodeling components MMP1 and LOX in well-differentiated colon epithelial cells, through the miR-24 and miR-30c miRNAs. PLEKHA7 depletion in epithelial cells results in LOX-dependent ECM remodeling in culture and in the colonic mucosal lamina propria in mice. Furthermore, PLEKHA7-depleted cells exhibit increased migration and invasion rates that are MMP1- and LOX- dependent, and form colonies in 3D cultures that are larger in size and acquire aberrant morphologies in stiffer matrices. These results reveal an AJ-mediated mechanism, through which epithelial cells drive ECM remodeling to modulate their behavior, including acquisition of phenotypes that are hallmarks of conditions such as fibrosis and tumorigenesis.

4.
Mol Biol Cell ; 34(13): ar129, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37819702

RESUMEN

Adherens junctions are cadherin-based structures critical for cellular architecture. E-cadherin junctions in mature epithelial cell monolayers tether to an apical actomyosin ring to form the zonula adherens (ZA). We have previously shown that the adherens junction protein PLEKHA7 associates with and regulates the function of the core RNA interference (RNAi) component AGO2 specifically at the ZA. However, the mechanism mediating AGO2 recruitment to the ZA remained unexplored. Here, we reveal that this ZA-specific recruitment of AGO2 depends on both the structural and tensile integrity of the actomyosin cytoskeleton. We found that depletion of not only PLEKHA7, but also either of the three PLEKHA7-interacting, LIM-domain family proteins, namely LMO7, LIMCH1, and PDLIM1, results in disruption of actomyosin organization and tension, as well as disruption of AGO2 junctional localization and of its miRNA-binding ability. We also show that AGO2 binds Myosin IIB and that PLEKHA7, LMO7, LIMCH1, and PDLIM1 all disrupt interaction of AGO2 with Myosin IIB at the ZA. These results demonstrate that recruitment of AGO2 to the ZA is sensitive to actomyosin perturbations, introducing the concept of mechanosensitive RNAi machinery, with potential implications in tissue remodeling and in disease.


Asunto(s)
Actinas , Uniones Adherentes , Actinas/metabolismo , Actomiosina/metabolismo , Uniones Adherentes/metabolismo , Cadherinas/metabolismo , Citocinesis , Células Epiteliales/metabolismo , Miosina Tipo IIB no Muscular/metabolismo , Humanos
5.
Cells ; 11(23)2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36497003

RESUMEN

The extracellular matrix (ECM) plays crucial roles in tissue homeostasis. Abnormalities in ECM composition are associated with pathological conditions, such as fibrosis and cancer. These ECM alterations are sensed by the epithelium and can influence its behavior through crosstalk with other mechanosensitive complexes, including the adherens junctions (AJs). We have previously shown that the AJs, through their component PLEKHA7, recruit the RNAi machinery to regulate miRNA levels and function. We have particularly shown that the junctional localization of RNAi components is critical for their function. Here, we investigated whether different ECM substrates can influence the junctional localization of RNAi complexes. To do this, we plated colon epithelial Caco2 cells on four key ECM substrates found in the colon under normal or pathogenic conditions, namely laminin, fibronectin, collagen I, and collagen IV, and we examined the subcellular distribution of PLEKHA7, and of the key RNAi components AGO2 and DROSHA. Fibronectin and collagen I negatively impacted the junctional localization of PLEKHA7, AGO2, and DROSHA when compared to laminin. Furthermore, fibronectin, collagen I, and collagen IV disrupted interactions of AGO2 and DROSHA with their essential partners GW182 and DGCR8, respectively, both at AJs and throughout the cell. Combinations of all substrates with fibronectin also negatively impacted junctional localization of PLEKHA7 and AGO2. Additionally, collagen I triggered accumulation of DROSHA at tri-cellular junctions, while both collagen I and collagen IV resulted in DROSHA accumulation at basal areas of cell-cell contact. Altogether, fibronectin and collagens I and IV, which are elevated in the stroma of fibrotic and cancerous tissues, altered localization patterns and disrupted complex formation of PLEKHA7 and RNAi components. Combined with our prior studies showing that apical junctional localization of the PLEKHA7-RNAi complex is critical for regulating tumor-suppressing miRNAs, this work points to a yet unstudied mechanism that could contribute to epithelial cell transformation.


Asunto(s)
Laminina , MicroARNs , Humanos , Laminina/metabolismo , Células CACO-2 , MicroARNs/genética , Proteínas de Unión al ARN , Células Epiteliales/metabolismo , Matriz Extracelular/metabolismo , Colágeno , Colon/metabolismo
6.
J Cell Biol ; 220(2)2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33464299

RESUMEN

Subcellular localization of RNAs has gained attention in recent years as a prevalent phenomenon that influences numerous cellular processes. This is also evident for the large and relatively novel class of long noncoding RNAs (lncRNAs). Because lncRNAs are defined as RNA transcripts >200 nucleotides that do not encode protein, they are themselves the functional units, making their subcellular localization critical to their function. The discovery of tens of thousands of lncRNAs and the cumulative evidence involving them in almost every cellular activity render assessment of their subcellular localization essential to fully understanding their biology. In this review, we summarize current knowledge of lncRNA subcellular localization, factors controlling their localization, emerging themes, including the role of lncRNA isoforms and the involvement of lncRNAs in phase separation bodies, and the implications of lncRNA localization on their function and on cellular behavior. We also discuss gaps in the current knowledge as well as opportunities that these provide for novel avenues of investigation.


Asunto(s)
Transporte de ARN , ARN Largo no Codificante/metabolismo , Animales , Membrana Celular/metabolismo , Humanos , Orgánulos/genética , Transporte de ARN/genética , ARN Largo no Codificante/genética
7.
Methods Mol Biol ; 2367: 235-247, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32789778

RESUMEN

With the realization that mechanical forces mediate many biological processes and contribute to disease progression, researchers are focusing on developing new methods to understand the role of mechanotransduction in biological systems. Despite recent advances in stretching devices that analyze the effects of mechanical strain in vitro, there are still possibilities to develop new equipment. For example, many of these devices tend be expensive, whereas few have been designed to assess the effects of mechanical strain driven by the extracellular matrix (ECM) to epithelial cell monolayers and to cell-cell adhesion. In this chapter, we introduce a cost-efficient, user-friendly, 3D-printed stretching device that can be used to test the effects of mechanical strain on cultured epithelial cells. Evaluation of the device using speckle-tracking shows homogeneous strain distribution along the horizontal plane of membranes at 2.5% and 5% strains, supporting the reliability of the device. Since cell-cell junctions are mechanosensitive protein complexes, we hereby used this device to examine effects on cell-cell adhesion. For this, we used colon epithelial Caco2 cell monolayers that well-differentiate in culture and form mature adherens junctions. Subjecting Caco2 cells to 2.5% and 5% strain using our device resulted in significant reduction in the localization of the core adherens junction component E-cadherin at areas of cell-cell contact and its increased translocation to the cytoplasm, which in agreement with other methodologies showing that increased ECM-driven strain negatively affects cell-cell adhesion. In summary, we here present a new, cost-effective, homemade device that can be reliably used to examine effects of mechanical strain on epithelial cell monolayers and cell-cell adhesion, in vitro.


Asunto(s)
Camillas , Uniones Adherentes , Células CACO-2 , Cadherinas , Adhesión Celular , Células Epiteliales , Humanos , Mecanotransducción Celular , Impresión Tridimensional , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA