Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Pediatr Res ; 86(1): 122-127, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30928997

RESUMEN

BACKGROUND: Machine learning models may enhance the early detection of clinically relevant hyperbilirubinemia based on patient information available in every hospital. METHODS: We conducted a longitudinal study on preterm and term born neonates with serial measurements of total serum bilirubin in the first two weeks of life. An ensemble, that combines a logistic regression with a random forest classifier, was trained to discriminate between the two classes phototherapy treatment vs. no treatment. RESULTS: Of 362 neonates included in this study, 98 had a phototherapy treatment, which our model was able to predict up to 48 h in advance with an area under the ROC-curve of 95.20%. From a set of 44 variables, including potential laboratory and clinical confounders, a subset of just four (bilirubin, weight, gestational age, hours since birth) suffices for a strong predictive performance. The resulting early phototherapy prediction tool (EPPT) is provided as an open web application. CONCLUSION: Early detection of clinically relevant hyperbilirubinemia can be enhanced by the application of machine learning. Existing guidelines can be further improved to optimize timing of bilirubin measurements to avoid toxic hyperbilirubinemia in high-risk patients while minimizing unneeded measurements in neonates who are at low risk.


Asunto(s)
Bilirrubina/sangre , Hiperbilirrubinemia Neonatal/sangre , Hiperbilirrubinemia Neonatal/diagnóstico , Aprendizaje Automático , Fototerapia , Área Bajo la Curva , Femenino , Edad Gestacional , Humanos , Recién Nacido , Recien Nacido Prematuro , Internet , Estudios Longitudinales , Masculino , Curva ROC , Análisis de Regresión , Estudios Retrospectivos , Sensibilidad y Especificidad
2.
Front Pediatr ; 11: 1229462, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37876524

RESUMEN

Background: Hyperbilirubinemia of the newborn infant is a common disease worldwide. However, recognized early and treated appropriately, it typically remains innocuous. We recently developed an early phototherapy prediction tool (EPPT) by means of machine learning (ML) utilizing just one bilirubin measurement and few clinical variables. The aim of this study is to test applicability and performance of the EPPT on a new patient cohort from a different population. Materials and methods: This work is a retrospective study of prospectively recorded neonatal data from infants born in 2018 in an academic hospital, Regensburg, Germany, meeting the following inclusion criteria: born with 34 completed weeks of gestation or more, at least two total serum bilirubin (TSB) measurement prior to phototherapy. First, the original EPPT-an ensemble of a logistic regression and a random forest-was used in its freely accessible version and evaluated in terms of the area under the receiver operating characteristic curve (AUROC). Second, a new version of the EPPT model was re-trained on the data from the new cohort. Third, the predictive performance, variable importance, sensitivity and specificity were analyzed and compared across the original and re-trained models. Results: In total, 1,109 neonates were included with a median (IQR) gestational age of 38.4 (36.6-39.9) and a total of 3,940 bilirubin measurements prior to any phototherapy treatment, which was required in 154 neonates (13.9%). For the phototherapy treatment prediction, the original EPPT achieved a predictive performance of 84.6% AUROC on the new cohort. After re-training the model on a subset of the new dataset, 88.8% AUROC was achieved as evaluated by cross validation. The same five variables as for the original model were found to be most important for the prediction on the new cohort, namely gestational age at birth, birth weight, bilirubin to weight ratio, hours since birth, bilirubin value. Discussion: The individual risk for treatment requirement in neonatal hyperbilirubinemia is robustly predictable in different patient cohorts with a previously developed ML tool (EPPT) demanding just one TSB value and only four clinical parameters. Further prospective validation studies are needed to develop an effective and safe clinical decision support system.

3.
Pediatr Infect Dis J ; 41(3): 248-254, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34508027

RESUMEN

BACKGROUND: Current strategies for risk stratification and prediction of neonatal early-onset sepsis (EOS) are inefficient and lack diagnostic performance. The aim of this study was to use machine learning to analyze the diagnostic accuracy of risk factors (RFs), clinical signs and biomarkers and to develop a prediction model for culture-proven EOS. We hypothesized that the contribution to diagnostic accuracy of biomarkers is higher than of RFs or clinical signs. STUDY DESIGN: Secondary analysis of the prospective international multicenter NeoPInS study. Neonates born after completed 34 weeks of gestation with antibiotic therapy due to suspected EOS within the first 72 hours of life participated. Primary outcome was defined as predictive performance for culture-proven EOS with variables known at the start of antibiotic therapy. Machine learning was used in form of a random forest classifier. RESULTS: One thousand six hundred eighty-five neonates treated for suspected infection were analyzed. Biomarkers were superior to clinical signs and RFs for prediction of culture-proven EOS. C-reactive protein and white blood cells were most important for the prediction of the culture result. Our full model achieved an area-under-the-receiver-operating-characteristic-curve of 83.41% (±8.8%) and an area-under-the-precision-recall-curve of 28.42% (±11.5%). The predictive performance of the model with RFs alone was comparable with random. CONCLUSIONS: Biomarkers have to be considered in algorithms for the management of neonates suspected of EOS. A 2-step approach with a screening tool for all neonates in combination with our model in the preselected population with an increased risk for EOS may have the potential to reduce the start of unnecessary antibiotics.


Asunto(s)
Biomarcadores/sangre , Aprendizaje Automático , Sepsis Neonatal/diagnóstico , Antibacterianos/uso terapéutico , Proteína C-Reactiva/análisis , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Sepsis Neonatal/tratamiento farmacológico , Estudios Prospectivos , Curva ROC , Factores de Riesgo
4.
Clin Pharmacol Ther ; 107(4): 926-933, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31930487

RESUMEN

Clinical pharmacology is a multidisciplinary data sciences field that utilizes mathematical and statistical methods to generate maximal knowledge from data. Pharmacometrics (PMX) is a well-recognized tool to characterize disease progression, pharmacokinetics, and risk factors. Because the amount of data produced keeps growing with increasing pace, the computational effort necessary for PMX models is also increasing. Additionally, computationally efficient methods, such as machine learning (ML) are becoming increasingly important in medicine. However, ML is currently not an integrated part of PMX, for various reasons. The goals of this article are to (i) provide an introduction to ML classification methods, (ii) provide examples for a ML classification analysis to identify covariates based on specific research questions, (iii) examine a clinically relevant example to investigate possible relationships of ML and PMX, and (iv) present a summary of ML and PMX tasks to develop clinical decision support tools.


Asunto(s)
Análisis de Datos , Bases de Datos Factuales/estadística & datos numéricos , Árboles de Decisión , Aprendizaje Automático/estadística & datos numéricos , Farmacología Clínica/estadística & datos numéricos , Humanos , Farmacología Clínica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA