RESUMEN
BACKGROUND: Cardiac conduction is understood to occur through gap junctions. Recent evidence supports ephaptic coupling as another mechanism of electrical communication in the heart. Conduction via gap junctions predicts a direct relationship between conduction velocity (CV) and bulk extracellular resistance. By contrast, ephaptic theory is premised on the existence of a biphasic relationship between CV and the volume of specialized extracellular clefts within intercalated discs such as the perinexus. Our objective was to determine the relationship between ventricular CV and structural changes to micro- and nanoscale extracellular spaces. METHODS: Conduction and Cx43 (connexin43) protein expression were quantified from optically mapped guinea pig whole-heart preparations perfused with the osmotic agents albumin, mannitol, dextran 70 kDa, or dextran 2 MDa. Peak sodium current was quantified in isolated guinea pig ventricular myocytes. Extracellular resistance was quantified by impedance spectroscopy. Intercellular communication was assessed in a heterologous expression system with fluorescence recovery after photobleaching. Perinexal width was quantified from transmission electron micrographs. RESULTS: CV primarily in the transverse direction of propagation was significantly reduced by mannitol and increased by albumin and both dextrans. The combination of albumin and dextran 70 kDa decreased CV relative to albumin alone. Extracellular resistance was reduced by mannitol, unchanged by albumin, and increased by both dextrans. Cx43 expression and conductance and peak sodium currents were not significantly altered by the osmotic agents. In response to osmotic agents, perinexal width, in order of narrowest to widest, was albumin with dextran 70 kDa; albumin or dextran 2 MDa; dextran 70 kDa or no osmotic agent, and mannitol. When compared in the same order, CV was biphasically related to perinexal width. CONCLUSIONS: Cardiac conduction does not correlate with extracellular resistance but is biphasically related to perinexal separation, providing evidence that the relationship between CV and extracellular volume is determined by ephaptic mechanisms under conditions of normal gap junctional coupling.
Asunto(s)
Conexina 43 , Dextranos , Animales , Cobayas , Dextranos/metabolismo , Conexina 43/metabolismo , Miocitos Cardíacos/metabolismo , Sodio/metabolismo , Uniones Comunicantes/metabolismo , Albúminas/metabolismo , Manitol/farmacología , Manitol/metabolismo , Potenciales de AcciónRESUMEN
Over the past decade, the increased adoption of electroporation-based technologies has led to an expansion of clinical research initiatives. Electroporation has been utilized in molecular biology for mammalian and bacterial transfection; for food sanitation; and in therapeutic settings to increase drug uptake, for gene therapy, and to eliminate cancerous tissues. We begin this article by discussing the biophysics required for understanding the concepts behind the cell permeation phenomenon that is electroporation. We then review nano- and microscale single-cell electroporation technologies before scaling up to emerging in vivo applications.
Asunto(s)
Electroquimioterapia , Neoplasias , Animales , Humanos , Electroporación , Transfección , Neoplasias/terapia , Terapia de Electroporación , Terapia Genética , MamíferosRESUMEN
While the primary goal of focal therapy for prostate cancer (PCa) is conserving patient quality of life by reducing oncological burden, available modalities use thermal energy or whole-gland radiation which can damage critical neurovascular structures within the prostate and increase risk of genitourinary dysfunction. High-frequency irreversible electroporation (H-FIRE) is a promising alternative ablation modality that utilizes bursts of pulsed electric fields (PEFs) to destroy aberrant cells via targeted membrane damage. Due to its nonthermal mechanism, H-FIRE offers several advantages over state-of-the-art treatments, but waveforms have not been optimized for treatment of PCa. In this study, we characterize lethal electric field thresholds (EFTs) for H-FIRE waveforms with three different pulse widths as well as three interpulse delays in vitro and compare them to conventional irreversible electroporation (IRE). Experiments were performed in non-neoplastic and malignant prostate cells to determine the effect of waveforms on both targeted (malignant) and adjacent (non-neoplastic) tissue. A numerical modeling approach was developed to estimate the clinical effects of each waveform including extent of nonthermal ablation, undesired thermal damage, and nerve excitation. Our findings indicate that H-FIRE waveforms with pulse durations of 5 and 10 µs provide large ablations comparable to IRE with tolerable levels of thermal damage and minimized muscle contractions. Lower duration (2 µs) H-FIRE waveforms exhibit the least amount of muscle contractions but require increased voltages which may be accompanied by unwanted thermal damage.
Asunto(s)
Electroporación , Neoplasias de la Próstata , Frecuencia Cardíaca , Humanos , Masculino , Contracción Muscular , Neoplasias de la Próstata/cirugía , Calidad de VidaRESUMEN
Irreversible electroporation (IRE), also referred to as nonthermal pulsed field ablation (PFA), is an attractive focal ablation modality for solid tumors and cardiac tissue due to its ability to destroy aberrant cells with limited disruption of the underlying tissue architecture. Despite its nonthermal cell death mechanism, application of electrical energy results in Joule heating that, if ignored, can cause undesired thermal injury. Engineered thermal mitigation (TM) technologies including phase change materials (PCMs) and active cooling (AC) have been reported and tested as a potential means to limit thermal damage. However, several variables affect TM performance including the pulsing paradigm, electrode geometry, PCM composition, and chosen active cooling parameters, meaning direct comparisons between approaches are lacking. In this study, we developed a computational model of conventional bipolar and monopolar probes with solid, PCM-filled, or actively cooled cores to simulate clinical IRE treatments in pancreatic tissue. This approach reveals that probes with integrated PCM cores can be tuned to drastically limit thermal damage compared to existing solid probes. Furthermore, actively cooled probes provide additional control over thermal effects within the probe vicinity and can altogether abrogate thermal damage. In practice, such differences in performance must be weighed against the increased time, expense, and effort required for modified probes compared to existing solid probes.
RESUMEN
This paper reviews the use of dielectrophoresis for high-fidelity separations and characterizations of subpopulations to highlight the recent advances in the electrokinetic field as well as provide insight into its progress toward commercialization. The role of cell subpopulations in heterogeneous clinical samples has been studied to deduce their role in disease progression and therapy resistance for instances such as cancer, tissue regeneration, and bacterial infection. Dielectrophoresis (DEP), a label-free electrokinetic technique, has been used to characterize and separate target subpopulations from mixed samples to determine disease severity, cell stemness, and drug efficacy. Despite its high sensitivity to characterize similar or related cells based on their differing bioelectric signatures, DEP has been slowly adopted both commercially and clinically. This review addresses the use of dielectrophoresis for the identification of target cell subtypes in stem cells, cancer cells, blood cells, and bacterial cells dependent on cell state and therapy exposure and addresses commercialization efforts in light of its sensitivity and future perspectives of the technology, both commercially and academically.
Asunto(s)
Electroforesis , Neoplasias , Animales , Progresión de la Enfermedad , Electroforesis/métodos , Humanos , Neoplasias/patología , Neoplasias/terapiaRESUMEN
Cell separation has become a critical diagnostic, research, and treatment tool for personalized medicine. Despite significant advances in cell separation, most widely used applications require the use of multiple, expensive antibodies to known markers in order to identify subpopulations of cells for separation. Dielectrophoresis (DEP) provides a biophysical separation technique that can target cell subpopulations based on phenotype without labels and return native cells for downstream analysis. One challenge in employing any DEP device is the sample being separated must be transferred into an ultralow conductivity medium, which can be detrimental in retaining cells' native phenotypes for separation. Here, we measured properties of traditional DEP reagents and determined that after just 1-2 h of exposure and subsequent culture, cells' viability was significantly reduced below 50%. We developed and tested a novel buffer (Cyto Buffer) that achieved 6 weeks of stable shelf-life and demonstrated significantly improved viability and physiological properties. We then determined the impact of Cyto Buffer on cells' dielectric properties and morphology and found that cells retained properties more similar to that of their native media. Finally, we vetted Cyto Buffer's usability on a cell separation platform (Cyto R1) to determine combined efficacy for cell separations. Here, more than 80% of cells from different cell lines were recovered and were determined to be >70% viable following exposure to Cyto Buffer, flow stimulation, electromanipulation, and downstream collection and growth. The developed buffer demonstrated improved opportunities for electrical cell manipulation, enrichment, and recovery for next generation cell separations.
Asunto(s)
Conductividad Eléctrica , Línea Celular , Separación Celular , Supervivencia Celular , Medios de Cultivo , ElectroforesisRESUMEN
This review summarizes the use of high-voltage electrical pulses (HVEPs) in clinical oncology to treat solid tumors with irreversible electroporation (IRE) and electrochemotherapy (ECT). HVEPs increase the membrane permeability of cells, a phenomenon known as electroporation. Unlike alternative ablative therapies, electroporation does not affect the structural integrity of surrounding tissue, thereby enabling tumors in the vicinity of vital structures to be treated. IRE uses HVEPs to cause cell death by inducing membrane disruption, and it is primarily used as a radical ablative therapy in the treatment of soft-tissue tumors in the liver, kidney, prostate, and pancreas. ECT uses HVEPs to transiently increase membrane permeability, enhancing cellular cytotoxic drug uptake in tumors. IRE and ECT show immunogenic effects that could be augmented when combined with immunomodulatory drugs, a combination therapy the authors term electroimmunotherapy. Additional electroporation-based technologies that may reach clinical importance, such as gene electrotransfer, electrofusion, and electroimmunotherapy, are concisely reviewed. HVEPs represent a substantial advancement in cancer research, and continued improvement and implementation of these presented technologies will require close collaboration between engineers, interventional radiologists, medical oncologists, and immuno-oncologists.
Asunto(s)
Electroporación/métodos , Oncología Médica/métodos , Neoplasias/terapia , Antineoplásicos/administración & dosificación , Fusión Celular/métodos , Terapia por Estimulación Eléctrica/métodos , Electroquimioterapia/métodos , Técnicas de Transferencia de Gen , Humanos , Inmunoterapia/métodosRESUMEN
PURPOSE: To determine the safety and feasibility of percutaneous high-frequency irreversible electroporation (HFIRE) for primary liver cancer and evaluate the HFIRE-induced local immune response. MATERIALS AND METHODS: HFIRE therapy was delivered percutaneously in 3 canine patients with resectable hepatocellular carcinoma (HCC) in the absence of intraoperative paralytic agents or cardiac synchronization. Pre- and post-HFIRE biopsy samples were processed with histopathology and immunohistochemistry for CD3, CD4, CD8, and CD79a. Blood was collected on days 0, 2, and 4 for complete blood count and chemistry. Numeric models were developed to determine the treatment-specific lethal thresholds for malignant canine liver tissue and healthy porcine liver tissue. RESULTS: HFIRE resulted in predictable ablation volumes as assessed by posttreatment CT. No detectable cardiac interference and minimal muscle contraction occurred during HFIRE. No clinically significant adverse events occurred secondary to HFIRE. Microscopically, a well-defined ablation zone surrounded by a reactive zone was evident in the majority of samples. This zone was composed primarily of maturing collagen interspersed with CD3+/CD4-/CD8- lymphocytes in a proinflammatory microenvironment. The average ablation volumes for the canine HCC patients and the healthy porcine tissue were 3.89 cm3 ± 0.74 and 1.56 cm3 ± 0.16, respectively (P = .03), and the respective average lethal thresholds were 710 V/cm ± 28.2 and 957 V/cm ± 24.4 V/cm (P = .0004). CONCLUSIONS: HFIRE can safely and effectively be delivered percutaneously, results in a predictable ablation volume, and is associated with lymphocytic tumor infiltration. This is the first step toward the use of HFIRE for treatment of unresectable liver tumors.
Asunto(s)
Técnicas de Ablación/veterinaria , Carcinoma Hepatocelular/veterinaria , Enfermedades de los Perros/cirugía , Electroporación/veterinaria , Neoplasias Hepáticas/veterinaria , Animales , Complejo CD3/inmunología , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/cirugía , Enfermedades de los Perros/inmunología , Enfermedades de los Perros/patología , Perros , Estudios de Factibilidad , Femenino , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/cirugía , Linfocitos Infiltrantes de Tumor/inmunología , Masculino , Prueba de Estudio Conceptual , Sus scrofaRESUMEN
The trapping and deflection of biological cells by dielectrophoresis (DEP) at field non-uniformities in a microfluidic device is often conducted in a contactless dielectrophoresis (cDEP) mode, wherein the electrode channel is in a different layer than the sample channel, so that field penetration through the interceding barrier causes DEP above critical cut-off frequencies. In this manner, through physical separation of the electrode and sample channels, it is possible to spatially modulate electric fields with no electrode-induced damage to biological cells in the sample channel. However, since this device requires interlayer alignment of the electrode to sample channel and needs to maintain a thin interceding barrier (~ 15 µm) over the entire length over which DEP is needed (~ 1 cm), variations in alignment and microstructure fidelity cause wide variations in cDEP trapping level and frequency response across devices. We present a strategy to eliminate interlayer alignment by fabricating self-aligned electrode and sample channels, simultaneously with the interceding barrier layer (14-µm width and 50-µm depth), using a single-layer imprint and bond process on cyclic olefin copolymer. Specifically, by designing support structures, we preserve fidelity of the high aspect ratio insulating posts in the sample channel and the interceding barrier between the sample and electrode channels over the entire device footprint (~ 1 cm). The device operation is validated based on impedance measurements to quantify field penetration through the interceding barrier and by DEP trapping measurements. The presented fabrication strategy can eventually improve cDEP device manufacturing protocols to enable more reproducible DEP performance. Graphical abstract.
Asunto(s)
Alquenos/química , Electroforesis/instrumentación , Dispositivos Laboratorio en un Chip , Polímeros/química , Diseño de EquipoRESUMEN
Cancer stem cells (CSCs) are aggressive subpopulations with increased stem-like properties. CSCs are usually resistant to most standard therapies and are responsible for tumor repropagation. Similar to normal stem cells, isolation of CSCs is challenging due to the lack of reliable markers. Antigen-based sorting of CSCs usually requires staining with multiple markers, making the experiments complicated, expensive, and sometimes unreliable. Here, we study the feasibility of using dielectrophoresis (DEP) for isolation of glioblastoma cells with increased stemness. We culture a glioblastoma cell line in the form of neurospheres as an in vitro model for glioblastoma stem cells. We demonstrate that spheroid forming cells have higher expression of stem cell marker, nestin. Next, we show that dielectric properties of neurospheres change as a result of changing culture conditions. Our results indicate that spheroid forming cells need higher voltages to experience the same DEP force magnitude compared to normal monolayer cultures of glioblastoma cell line. This study confirms the possibility of using DEP to isolate glioblastoma stem cells.
Asunto(s)
Electroforesis/métodos , Glioblastoma/patología , Técnicas Analíticas Microfluídicas/métodos , Esferoides Celulares , Línea Celular Tumoral , Electroforesis/instrumentación , Diseño de Equipo , Estudios de Factibilidad , Humanos , Técnicas Analíticas Microfluídicas/instrumentación , Esferoides Celulares/clasificación , Esferoides Celulares/citología , Células Tumorales CultivadasRESUMEN
PURPOSE: To investigate the feasibility of single-needle high-frequency irreversible electroporation (SN-HFIRE) to create reproducible tissue ablations in an in vivo pancreatic swine model. MATERIALS AND METHODS: SN-HFIRE was performed in swine pancreas in vivo in the absence of intraoperative paralytics or cardiac synchronization using 3 different voltage waveforms (1-5-1, 2-5-2, and 5-5-5 [on-off-on times (µs)], n = 6/setting) with a total energized time of 100 µs per burst. At necropsy, ablation size/shape was determined. Immunohistochemistry was performed to quantify apoptosis using an anticleaved caspase-3 antibody. A numerical model was developed to determine lethal thresholds for each waveform in pancreas. RESULTS: Mean tissue ablation time was 5.0 ± 0.2 minutes, and no cardiac abnormalities or muscle twitch was detected. Mean ablation area significantly increased with increasing pulse width (41.0 ± 5.1 mm2 [range 32-66 mm2] vs 44 ± 2.1 mm2 [range 38-56 mm2] vs 85.0 ± 7.0 mm2 [range 63-155 mm2]; 1-5-1, 2-5-2, 5-5-5, respectively; p < 0.0002 5-5-5 vs 1-5-1 and 2-5-2). The majority of the ablation zone did not stain positive for cleaved caspase-3 (6.1 ± 2.8% [range 1.8-9.1%], 8.8 ± 1.3% [range 5.5-14.0%], and 11.0 ± 1.4% [range 7.1-14.2%] cleaved caspase-3 positive 1-5-1, 2-5-2, 5-5-5, respectively), with significantly more positive staining at the 5-5-5 pulse setting compared with 1-5-1 (p < 0.03). Numerical modeling determined a lethal threshold of 1114 ± 123 V/cm (1-5-1 waveform), 1039 ± 103 V/cm (2-5-2 waveform), and 693 ± 81 V/cm (5-5-5 waveform). CONCLUSIONS: SN-HFIRE induces rapid, predictable ablations in pancreatic tissue in vivo without the need for intraoperative paralytics or cardiac synchronization.
Asunto(s)
Técnicas de Ablación/instrumentación , Electroporación/instrumentación , Agujas , Páncreas/cirugía , Técnicas de Ablación/métodos , Animales , Apoptosis , Caspasa 3/metabolismo , Electroporación/métodos , Estudios de Factibilidad , Femenino , Análisis de Elementos Finitos , Modelos Animales , Modelos Teóricos , Análisis Numérico Asistido por Computador , Páncreas/metabolismo , Páncreas/patología , Sus scrofaRESUMEN
Purpose: This study evaluates the effects of various pulsing paradigms, on the irreversible electroporation (IRE) lesion, induced electric current, and temperature changes using a perfused porcine liver model. Materials and methods: A 4-monopolar electrode array delivered IRE therapy varying the pulse length and inter-pulse delay to six porcine mechanically perfused livers. Pulse paradigms included six forms of cycled pulsing schemes and the conventional pulsing scheme. Finite element models provided further insight into the effects of cycled pulsing on the temperature and thermal injury distribution. Results: 'Single pulse cycle with no interpulse delay' deposited maximum average energy (2.34 ± 0.35 kJ) and produced the largest ratio of thermally damaged tissue area and IRE ablation area from all other pulse schemes (18.22% ± 8.11, p < .0001 all pairwise comparisons). These compared favorably to the conventional algorithm (2.09 ± 0.37 kJ, 3.49% ± 2.20, p < .0001, all comparisons). Though no statistical significance was found between groups, the '5 pulse cycle, 0 s delay' pulse paradigm produced the largest average IRE ablation cross sectional area (11.81 ± 1.97 cm2), while conventional paradigm yielded an average of 8.90 ± 0.91 cm2. Finite element modeling indicated a '10 pulse cycle, 10 s delay' generated the least thermal tissue damage and '1 pulse cycle, 0 s delay' pulse cycle sequence the most (0.47 vs. 3.76 cm2), over a lengthier treatment time (16.5 vs. 6.67 minutes). Conclusions: Subdividing IRE pulses and adding delays throughout the treatment can reduce white tissue coagulation and electric current, while maintaining IRE treatment sizes.
Asunto(s)
Electroporación/métodos , Animales , Electrodos , Porcinos , TemperaturaRESUMEN
BACKGROUND/OBJECTIVE: Systemic lupus erythematosus (SLE) is an inflammatory, chronic, and multisystemic disease, which may be associated with a wide range of neuropsychiatric manifestations, including cognitive impairment. Cognitive evaluations based on screening tests might identify early SLE-related cognitive alterations. The aim of this study was to evaluate and to compare the efficacy of three screening tests (Montreal Cognitive Assessment [MoCA], Mini Mental State Examination [MMSE], Cognitive Symptom Inventory [CSI]) against the gold standard (neuropsychological battery), in order to identify the most efficient screening test for cognitive impairment in patients with SLE. METHODS: This observational cross-sectional study recruited 44 patients, from August to December 2017, who were diagnosed with SLE according to the Systemic Lupus International Collaborating Clinics (SLICC) Criteria 2012, and had no medical or psychiatric comorbidities. The patients were evaluated using the MoCA, MMSE, CSI, and the gold standard. Spearman's correlation and area under the curve analysis were performed; p < 0.05 was considered significant. RESULTS: The MoCA test showed the highest correspondence with the gold standard (AUC = 99.4%, p < 0.001), sensitivity (84%), and specificity (100%). This was followed by the MMSE (AUC = 92.6%, p < 0.001; sensitivity, 54.8%; specificity, 100%) and the CSI (AUC = 30.6%, p < 0.05; sensitivity, 54.8%; specificity, 30.76%). CONCLUSION: The MoCA is a brief, easily applied screening test that is highly effective for detecting cognitive impairment in SLE patients. It could be useful in clinical follow-up as a tool for early detection of cognitive alterations.
Asunto(s)
Disfunción Cognitiva , Lupus Eritematoso Sistémico/psicología , Tamizaje Masivo/métodos , Pruebas de Estado Mental y Demencia/normas , Adulto , Cognición , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/fisiopatología , Estudios Transversales , Diagnóstico Precoz , Femenino , Humanos , Batería Neuropsicológica de Luria-Nebraska , MasculinoRESUMEN
BACKGROUND: Irreversible electroporation (IRE) therapy relies on pulsed electric fields to non-thermally ablate cancerous tissue. Methods for evaluating IRE ablation in situ are critical to assessing treatment outcome. Analyzing changes in tissue impedance caused by electroporation has been proposed as a method for quantifying IRE ablation. In this paper, we assess the hypothesis that irreversible electroporation ablation outcome can be monitored using the impedance change measured by the electrode pairs not in use, getting more information about the ablation size in different directions. METHODS: Using a square four-electrode configuration, the two diagonal electrodes were used to electroporate potato tissue. Next, the impedance changes, before and after treatment, were measured from different electrode pairs and the impedance information was extracted by fitting the data to an equivalent circuit model. Finally, we correlated the change of impedance from various electrode pairs to the ablation geometry through the use of fitted functions; then these functions were used to predict the ablation size and compared to the numerical simulation results. RESULTS: The change in impedance from the electrodes used to apply pulses is larger and has higher deviation than the other electrode pairs. The ablation size and the change in resistance in the circuit model correlate with various linear functions. The coefficients of determination for the three functions are 0.8121, 0.8188 and 0.8691, respectively, showing satisfactory agreement. The functions can well predict the ablation size under different pulse numbers, and in some directions it did even better than the numerical simulation method, which used different electric field thresholds for different pulse numbers. CONCLUSIONS: The relative change in tissue impedance measured from the non-energized electrodes can be used to assess ablation size during treatment with IRE according to linear functions.
Asunto(s)
Técnicas de Ablación/instrumentación , Electroporación/instrumentación , Solanum tuberosum/citología , Impedancia Eléctrica , Electrodos , Diseño de EquipoRESUMEN
PURPOSE: This study evaluates the effects of active electrode cooling, via internal fluid circulation, on the irreversible electroporation (IRE) lesion, deployed electric current and temperature changes using a perfused porcine liver model. MATERIALS AND METHODS: A bipolar electrode delivered IRE electric pulses with or without activation of internal cooling to nine porcine mechanically perfused livers. Pulse schemes included a constant voltage, and a preconditioned delivery combined with an arc-mitigation algorithm. After treatment, organs were dissected, and treatment zones were stained using triphenyl-tetrazolium chloride (TTC) to demonstrate viability. RESULTS: Thirty-nine treatments were performed with an internally cooled applicator and 21 with a non-cooled applicator. For the constant voltage scenario, the average final electrical current measured was 26.37 and 29.20 A for the cooled and uncooled electrodes respectively ([Formula: see text]). The average final temperature measured was 33.01 and 42.43 °C for the cooled and uncooled electrodes respectively ([Formula: see text]). The average measured ablations (fixed lesion) were 3.88-by-2.08 cm and 3.86-by-2.12 cm for the cooled and uncooled electrode respectively ([Formula: see text], [Formula: see text]). Similarly, the preconditioned/arc-mitigation scenario yielded an average final electrical current measurement of a 41.07 and 47.20 A for the cooled and uncooled electrodes respectively ([Formula: see text]). The average final temperature measured was 34.93 and 44.90 °C for the cooled and uncooled electrodes respectively ([Formula: see text]). The average measured ablations (fixed lesion) were 3.67-by-2.27 cm and 3.58-by-2.09 cm for the cooled and uncooled applicators ([Formula: see text]). CONCLUSIONS: The internally-cooled bipolar applicator offers advantages that could improve clinical outcomes. Thermally mitigating internal perfusion technology reduced tissue temperatures and electric current while maintaining similar lesion sizes.
Asunto(s)
Técnicas de Ablación/métodos , Electroporación/métodos , Hígado/cirugía , Animales , Frío , Modelos Animales de Enfermedad , Electrodos , Hígado/patología , PorcinosRESUMEN
Pulsed electric fields applied to cells have been used as an invaluable research tool to enhance delivery of genes or other intracellular cargo, as well as for tumor treatment via electrochemotherapy or tissue ablation. These processes involve the buildup of charge across the cell membrane, with subsequent alteration of transmembrane potential that is a function of cell biophysics and geometry. For traditional electroporation parameters, larger cells experience a greater degree of membrane potential alteration. However, we have recently demonstrated that the nuclear/cytoplasm ratio (NCR), rather than cell size, is a key predictor of response for cells treated with high-frequency irreversible electroporation (IRE). In this study, we leverage a targeted molecular therapy, ephrinA1, known to markedly collapse the cytoplasm of cells expressing the EphA2 receptor, to investigate how biophysical cellular changes resulting from NCR manipulation affect the response to IRE at varying frequencies. We present evidence that the increase in the NCR mitigates the cell death response to conventional electroporation pulsed-electric fields (â¼100 µs), consistent with the previously noted size dependence. However, this same molecular treatment enhanced the cell death response to high-frequency electric fields (â¼1 µs). This finding demonstrates the importance of considering cellular biophysics and frequency-dependent effects in developing electroporation protocols, and our approach provides, to our knowledge, a novel and direct experimental methodology to quantify the relationship between cell morphology, pulse frequency, and electroporation response. Finally, this novel, to our knowledge, combinatorial approach may provide a paradigm to enhance in vivo tumor ablation through a molecular manipulation of cellular morphology before IRE application.
Asunto(s)
Electroporación/métodos , Efrina-A1/farmacología , Terapia Molecular Dirigida/métodos , Animales , Astrocitos/efectos de los fármacos , Astrocitos/patología , Fenómenos Biomecánicos , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Tamaño de la Célula , Técnicas de Cocultivo , Colágeno , Campos Electromagnéticos , Análisis de Elementos Finitos , Glioma/tratamiento farmacológico , Glioma/patología , Glioma/terapia , Humanos , Hidrogeles , Potenciales de la Membrana , Modelos Biológicos , Ratas , Receptor EphA2/metabolismoRESUMEN
High-frequency bipolar electric pulses have been shown to mitigate undesirable muscle contraction during irreversible electroporation (IRE) therapy. Here, we evaluate the potential applicability of such pulses for introducing exogenous molecules into cells, such as in electrochemotherapy (ECT). For this purpose we develop a method for calculating the time course of the effective permeability of an electroporated cell membrane based on real-time imaging of propidium transport into single cells that allows a quantitative comparison between different pulsing schemes. We calculate the effective permeability for several pulsed electric field treatments including trains of 100µs monopolar pulses, conventionally used in IRE and ECT, and pulse trains containing bursts or evenly-spaced 1µs bipolar pulses. We show that shorter bipolar pulses induce lower effective membrane permeability than longer monopolar pulses with equivalent treatment times. This lower efficiency can be attributed to incomplete membrane charging. Nevertheless, bipolar pulses could be used for increasing the uptake of small molecules into cells more symmetrically, but at the expense of higher applied voltages. These data indicate that high-frequency bipolar bursts of electrical pulses may be designed to electroporate cells as effectively as and more homogeneously than conventional monopolar pulses.
Asunto(s)
Membrana Celular/metabolismo , Electroporación/métodos , Propidio/metabolismo , Análisis de la Célula Individual/métodos , Animales , Transporte Biológico , Células CHO , Permeabilidad de la Membrana Celular , Cricetulus , Electrodos , Potenciales de la Membrana/fisiología , Análisis de la Célula Individual/instrumentaciónRESUMEN
A common problem with cancer treatment is the development of treatment resistance and tumor recurrence that result from treatments that kill most tumor cells yet leave behind aggressive cells to repopulate. Presented here is a microfluidic device that can be used to isolate tumor subpopulations to optimize treatment selection. Dielectrophoresis (DEP) is a phenomenon where particles are polarized by an electric field and move along the electric field gradient. Different cell subpopulations have different DEP responses depending on their bioelectrical phenotype, which, we hypothesize, correlate with aggressiveness. We have designed a microfluidic device in which a region containing posts locally distorts the electric field created by an AC voltage and forces cells toward the posts through DEP. This force is balanced with a simultaneous drag force from fluid motion that pulls cells away from the posts. We have shown that by adjusting the drag force, cells with aggressive phenotypes are influenced more by the DEP force and trap on posts while others flow through the chip unaffected. Utilizing single-cell trapping via cell-sized posts coupled with a drag-DEP force balance, we show that separation of similar cell subpopulations may be achieved, a result that was previously impossible with DEP alone. Separated subpopulations maintain high viability downstream, and remain in a native state, without fluorescent labeling. These cells can then be cultured to help select a therapy that kills aggressive subpopulations equally or better than the bulk of the tumor, mitigating resistance and recurrence.
Asunto(s)
Separación Celular , Electroforesis por Microchip/instrumentación , Electroforesis por Microchip/métodos , Dispositivos Laboratorio en un Chip , Neoplasias/patología , Animales , Línea Celular Tumoral , Separación Celular/instrumentación , Separación Celular/métodos , Simulación por Computador , Diseño de Equipo/instrumentación , Diseño de Equipo/métodos , Estudios de Factibilidad , Femenino , Humanos , Fenómenos Mecánicos , Ratones , Ratones Endogámicos C57BL , Microelectrodos , Modelos Teóricos , Movimiento (Física) , Neoplasias OváricasRESUMEN
BACKGROUND AND OBJECTIVES: Irreversible Electroporation (IRE) is a focal ablation technique highly attractive to surgical oncologists due to its non-thermal nature that allows for eradication of unresectable tumors in a minimally invasive procedure. In this study, our group sought to address the challenge of predicting the ablation volume with IRE for pancreatic procedures. METHODS: In compliance with HIPAA and hospital IRB approval, we established a pre-treatment planning methodology for IRE procedures in pancreas, which optimized treatment protocols for individual cases of locally advanced pancreatic cancer (LAPC). A new method for confirming treatment plans through intraoperative monitoring of tissue resistance was also proved feasible in three patients. RESULTS: Results from computational models showed good correlation with experimental data available in the literature. By implementing the proposed resistance measurement system 210 ± 26.1 (mean ± standard deviation) fewer pulses were delivered per electrode-pair. CONCLUSION: The proposed physics-based pre-treatment plan through finite element analysis and system for actively monitoring resistance changes can be paired to significantly reduce ablation times and risk of thermal effects during IRE procedures for LAPC.
Asunto(s)
Técnicas de Ablación/métodos , Electroporación/métodos , Neoplasias Pancreáticas/cirugía , Anciano , Análisis de Elementos Finitos , Humanos , Masculino , Modelos Anatómicos , Neoplasias Pancreáticas/diagnóstico por imagen , Medicina de Precisión/métodosRESUMEN
Irreversible electroporation (IRE) is a nonthermal ablation modality employed to induce in situ tissue-cell death. This study sought to evaluate the efficacy of a novel high-frequency IRE (H-FIRE) system to perform hepatic ablations across, or adjacent to, critical vascular and biliary structures. Using ultrasound guidance H-FIRE electrodes were placed across, or adjacent to, portal pedicels, hepatic veins, or the gall bladder in a porcine model. H-FIRE pulses were delivered (2250 V, 2-5-2 pulse configuration) in the absence of cardiac synchronization or intraoperative paralytics. Six hours after H-FIRE the liver was resected and analyzed. Nine ablations were performed in 3 separate experimental groups (major vessels straddled by electrodes, electrodes placed adjacent to major vessels, electrodes placed adjacent to gall bladder). Average ablation time was 290 ± 63 seconds. No electrocardiogram abnormalities or changes in vital signs were observed during H-FIRE. At necropsy, no vascular damage, coagulated-thermally desiccated blood vessels, or perforated biliary structures were noted. Histologically, H-FIRE demonstrated effective tissue ablation and uniform induction of apoptotic cell death in the parenchyma independent of vascular or biliary structure location. Detailed microscopic analysis revealed minor endothelial damage within areas subjected to H-FIRE, particularly in regions proximal to electrode insertion. These data indicate H-FIRE is a novel means to perform rapid, reproducible IRE in liver tissue while preserving gross vascular/biliary architecture. These characteristics raise the potential for long-term survival studies to test the viability of this technology toward clinical use to target tumors not amenable to thermal ablation or resection.