Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Physiol Heart Circ Physiol ; 326(5): H1131-H1137, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38456848

RESUMEN

A significant number of pregnancies occur at advanced maternal age (>35 yr), which is a risk factor for pregnancy complications. Healthy pregnancies require massive hemodynamic adaptations, including an increased blood volume and cardiac output. There is growing evidence that these cardiovascular adaptations are impaired with age, however, little is known about maternal cardiac function with advanced age. We hypothesized that cardiac adaptations to pregnancy are impaired with advanced maternal age. Younger (4 mo; ∼early reproductive maturity in humans) and aged (9 mo; ∼35 yr in humans) pregnant Sprague-Dawley rats were assessed and compared with age-matched nonpregnant controls. Two-dimensional echocardiographic images were obtained (ultrasound biomicroscopy; under anesthesia) on gestational day 19 (term = 22 days) and compared with age-matched nonpregnant rats (n = 7-9/group). Left ventricular structure and function were assessed using short-axis images and transmitral Doppler signals. During systole, left ventricular anterior wall thickness increased with age in the nonpregnant rats, but there was no age-related difference between the pregnant groups. There were no significant pregnancy-associated differences in left ventricular wall thickness. Calculated left ventricular mass increased with age in nonpregnant rats and increased with pregnancy only in young rats. Compared with young pregnant rats, the aortic ejection time of aged pregnant rats was greater and Tei index was lower. Overall, the greater aortic ejection time and lower Tei index with age in pregnant rats suggest mildly altered cardiac adaptations to pregnancy with advanced maternal age, which may contribute to adverse outcomes in advanced maternal age pregnancies.NEW & NOTEWORTHY We demonstrated that even before the age of reproductive senescence, rats show signs of age-related alterations in cardiac structure that suggests increased cardiac work. Our data also demonstrate, using an in vivo echocardiographic approach, that advanced maternal age in a rat model is associated with altered cardiac function and structure relative to younger pregnant controls.


Asunto(s)
Ecocardiografía , Corazón , Embarazo , Femenino , Humanos , Ratas , Animales , Edad Materna , Ratas Sprague-Dawley , Corazón/diagnóstico por imagen , Gasto Cardíaco
2.
Am J Physiol Heart Circ Physiol ; 327(1): H221-H241, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38819382

RESUMEN

Research using animals depends on the generation of offspring for use in experiments or for the maintenance of animal colonies. Although not considered by all, several different factors preceding and during pregnancy, as well as during lactation, can program various characteristics in the offspring. Here, we present the most common models of developmental programming of cardiovascular outcomes, important considerations for study design, and provide guidelines for producing and reporting rigorous and reproducible cardiovascular studies in offspring exposed to normal conditions or developmental insult. These guidelines provide considerations for the selection of the appropriate animal model and factors that should be reported to increase rigor and reproducibility while ensuring transparent reporting of methods and results.


Asunto(s)
Enfermedades Cardiovasculares , Modelos Animales de Enfermedad , Animales , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/fisiopatología , Femenino , Embarazo , Efectos Tardíos de la Exposición Prenatal , Humanos , Proyectos de Investigación , Factores de Riesgo de Enfermedad Cardiaca , Medición de Riesgo , Reproducibilidad de los Resultados , Desarrollo Fetal
3.
Am J Physiol Heart Circ Physiol ; 327(1): H191-H220, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38758127

RESUMEN

Maternal mortality rates are at an all-time high across the world and are set to increase in subsequent years. Cardiovascular disease is the leading cause of death during pregnancy and postpartum, especially in the United States. Therefore, understanding the physiological changes in the cardiovascular system during normal pregnancy is necessary to understand disease-related pathology. Significant systemic and cardiovascular physiological changes occur during pregnancy that are essential for supporting the maternal-fetal dyad. The physiological impact of pregnancy on the cardiovascular system has been examined in both experimental animal models and in humans. However, there is a continued need in this field of study to provide increased rigor and reproducibility. Therefore, these guidelines aim to provide information regarding best practices and recommendations to accurately and rigorously measure cardiovascular physiology during normal and cardiovascular disease-complicated pregnancies in human and animal models.


Asunto(s)
Fenómenos Fisiológicos Cardiovasculares , Periodo Posparto , Embarazo , Humanos , Femenino , Animales , Complicaciones Cardiovasculares del Embarazo/fisiopatología , Sistema Cardiovascular/fisiopatología , Enfermedades Cardiovasculares/fisiopatología , Enfermedades Cardiovasculares/diagnóstico
4.
Clin Sci (Lond) ; 138(4): 137-151, 2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38299431

RESUMEN

Hypercholesterolemia in pregnancy is a physiological process required for normal fetal development. In contrast, excessive pregnancy-specific hypercholesterolemia increases the risk of complications, such as preeclampsia. However, the underlying mechanisms are unclear. Toll-like receptor 4 (TLR4) is a membrane receptor modulated by high cholesterol levels, leading to endothelial dysfunction; but whether excessive hypercholesterolemia in pregnancy activates TLR4 is not known. We hypothesized that a high cholesterol diet (HCD) during pregnancy increases TLR4 activity in uterine arteries, leading to uterine artery dysfunction. Sprague Dawley rats were fed a control diet (n=12) or HCD (n=12) during pregnancy (gestational day 6-20). Vascular function was assessed in main uterine arteries using wire myography (vasodilation to methacholine and vasoconstriction to phenylephrine; with and without inhibitors for mechanistic pathways) and pressure myography (biomechanical properties). Exposure to a HCD during pregnancy increased maternal blood pressure, induced proteinuria, and reduced the fetal-to-placental weight ratio for both sexes. Excessive hypercholesterolemia in pregnancy also impaired vasodilation to methacholine in uterine arteries, whereby at higher doses, methacholine caused vasoconstriction instead of vasodilation in only the HCD group, which was prevented by inhibition of TLR4 or prostaglandin H synthase 1. Endothelial nitric oxide synthase expression and nitric oxide levels were reduced in HCD compared with control dams. Vasoconstriction to phenylephrine and biomechanical properties were similar between groups. In summary, excessive hypercholesterolemia in pregnancy impairs uterine artery function, with TLR4 activation as a key mechanism. Thus, TLR4 may be a target for therapy development to prevent adverse perinatal outcomes in complicated pregnancies.


Asunto(s)
Hipercolesterolemia , Hiperlipidemias , Animales , Femenino , Masculino , Embarazo , Ratas , Hipercolesterolemia/metabolismo , Hiperlipidemias/metabolismo , Cloruro de Metacolina/metabolismo , Fenilefrina/farmacología , Fenilefrina/metabolismo , Placenta , Ratas Sprague-Dawley , Receptor Toll-Like 4/metabolismo , Arteria Uterina/metabolismo , Vasodilatación/fisiología
5.
Arterioscler Thromb Vasc Biol ; 43(1): 120-132, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36353990

RESUMEN

BACKGROUND: Gestational dyslipidemia is associated with pregnancy complications including preeclampsia. However, whether gestational dyslipidemia leads postpartum vascular dysfunction, which could increase the risk for cardiovascular complications later in life, is not known. Here, we aimed to determine whether a gestational dyslipidemia affects postpartum vascular health and induces early signs of atherosclerosis. METHODS: Pregnant C57BL/6 mice received a high cholesterol diet or control diet from gestational day 13.5 until term. After delivery, all mice received the control diet for ≈3 months postpartum (PP). Age-matched nulliparous females were on the same diets for equal periods. After 3 months, all mice were euthanized, serum was collected, and aortas were isolated to assess vascular function (wire myography) and markers of oxidative stress and early atherosclerosis. RESULTS: PP-high cholesterol diet females had increased circulating cholesterol levels compared with PP-control diet mice, without effect of the diet in nulliparous mice. Methacholine-induced vasodilation was impaired, and nitric oxide contribution reduced, by the high cholesterol diet in aortas of PP mice, but not in nulliparous mice. Exposure to oxidized low-density-protein cholesterol further impaired methylcholine-induced vasodilation in PP-high cholesterol diet aortas only. Compared with PP-control diet mice, aortic inducible nitric oxide synthase expression, reactive oxygen species and nitrotyrosine levels were increased in aortas from PP-high cholesterol diet mice. No differences in aortic lipid deposition and macrophage infiltration were found. CONCLUSIONS: Exposure to a high cholesterol diet in pregnancy impairs vascular function postpartum. Our results support the hypothesis that gestational dyslipidemia impacts maternal vascular function after pregnancy, which could potentially predispose these women to future cardiovascular complications.


Asunto(s)
Aterosclerosis , Hipercolesterolemia , Humanos , Embarazo , Ratones , Femenino , Animales , Ratones Endogámicos C57BL , Vasodilatación , Dieta , Colesterol/farmacología
6.
Acta Obstet Gynecol Scand ; 103(2): 266-275, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37948551

RESUMEN

INTRODUCTION: Preeclampsia and gestational diabetes mellitus share risk factors such as obesity and increased maternal age, which have become more prevalent in recent decades. We examined changes in the prevalence of preeclampsia and gestational diabetes between 2005 and 2018 in Denmark and Alberta, Canada, and investigated whether the observed trends can be explained by changes in maternal age, parity, multiple pregnancy, comorbidity, and body mass index (BMI) over time. MATERIAL AND METHODS: This study was a register-based cohort study conducted using data from the Danish National Health Registers and the provincial health registers of Alberta, Canada. We included in the study cohort all pregnancies in 2005-2018 resulting in live-born infants and used binomial regression to estimate mean annual increases in the prevalence of preeclampsia and gestational diabetes in the two populations across the study period, adjusted for maternal characteristics. RESULTS: The study cohorts included 846 127 (Denmark) and 706 728 (Alberta) pregnancies. The prevalence of preeclampsia increased over the study period in Denmark (2.5% to 2.9%) and Alberta (1.7% to 2.5%), with mean annual increases of 0.03 (95% confidence interval [CI] 0.02-0.04) and 0.06 (95% CI 0.05-0.07) percentage points, respectively. The prevalence of gestational diabetes also increased in Denmark (1.9% to 4.6%) and Alberta (3.9% to 9.2%), with average annual increases of 0.20 (95% CI 0.19-0.21) and 0.44 (95% CI 0.42-0.45) percentage points. Changes in the distributions of maternal age and BMI contributed to increases in the prevalence of both conditions but could not explain them entirely. CONCLUSIONS: The prevalence of both preeclampsia and gestational diabetes increased significantly from 2005 to 2018, which portends future increases in chronic disease rates among affected women. Increasing demand for long-term follow up and care will amplify the existing pressure on healthcare systems.


Asunto(s)
Diabetes Gestacional , Preeclampsia , Embarazo , Femenino , Humanos , Preeclampsia/epidemiología , Diabetes Gestacional/epidemiología , Estudios de Cohortes , Alberta/epidemiología , Factores de Riesgo , Dinamarca/epidemiología
7.
Physiol Rev ; 96(2): 549-603, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26887677

RESUMEN

The developmental origins of health and disease theory is based on evidence that a suboptimal environment during fetal and neonatal development can significantly impact the evolution of adult-onset disease. Abundant evidence exists that a compromised prenatal (and early postnatal) environment leads to an increased risk of hypertension later in life. Hypertension is a silent, chronic, and progressive disease defined by elevated blood pressure (>140/90 mmHg) and is strongly correlated with cardiovascular morbidity/mortality. The pathophysiological mechanisms, however, are complex and poorly understood, and hypertension continues to be one of the most resilient health problems in modern society. Research into the programming of hypertension has proposed pharmacological treatment strategies to reverse and/or prevent disease. In addition, modifications to the lifestyle of pregnant women might impart far-reaching benefits to the health of their children. As more information is discovered, more successful management of hypertension can be expected to follow; however, while pregnancy complications such as fetal growth restriction, preeclampsia, preterm birth, etc., continue to occur, their offspring will be at increased risk for hypertension. This article reviews the current knowledge surrounding the developmental origins of hypertension, with a focus on mechanistic pathways and targets for therapeutic and pharmacologic interventions.


Asunto(s)
Hipertensión/etiología , Efectos Tardíos de la Exposición Prenatal , Animales , Femenino , Humanos , Hipertensión/terapia , Embarazo
8.
Am J Physiol Heart Circ Physiol ; 325(1): H136-H141, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37235521

RESUMEN

Prenatal hypoxia is associated with enhanced susceptibility to cardiac ischemia-reperfusion (I/R) injury in adult offspring, however, the mechanisms remain to be fully investigated. Endothelin-1 (ET-1) is a vasoconstrictor that acts via endothelin A (ETA) and endothelin B (ETB) receptors and is essential in maintaining cardiovascular (CV) function. Prenatal hypoxia alters the ET-1 system in adult offspring possibly contributing to I/R susceptibility. We previously showed that ex vivo application of ETA antagonist ABT-627 during I/R prevented the recovery of cardiac function in prenatal hypoxia-exposed males but not in normoxic males nor normoxic or prenatal hypoxia-exposed females. In this follow-up study, we examined whether placenta-targeted treatment with a nanoparticle-encapsulated mitochondrial antioxidant (nMitoQ) during hypoxic pregnancies could alleviate this hypoxic phenotype observed in adult male offspring. We used a rat model of prenatal hypoxia where pregnant Sprague-Dawley rats were exposed to hypoxia (11% O2) from gestational days (GD) 15-21 after injection with 100 µL saline or nMitoQ (125 µM) on GD15. Male offspring were aged to 4 mo and ex vivo cardiac recovery from I/R was assessed. Offspring born from hypoxic pregnancies and treated with nMitoQ had increased cardiac recovery from I/R in the presence of ABT-627 compared with their untreated counterparts where ABT-627 prevented recovery. Cardiac ETA levels were increased in males born from hypoxic pregnancies with nMitoQ treatment compared with saline controls (Western blotting). Our data indicate a profound impact of placenta-targeted treatment to prevent an ETA receptor cardiac phenotype observed in adult male offspring exposed to hypoxia in utero.NEW & NOTEWORTHY In this follow-up study, we showed a complete lack of recovery from I/R injury after the application of an ETA receptor antagonist (ABT-627) in adult male offspring exposed to hypoxia in utero while maternal treatment with nMitoQ during prenatal hypoxia exposure prevented this effect. Our data suggest that nMitoQ treatment during hypoxic pregnancies may prevent a hypoxic cardiac phenotype in adult male offspring.


Asunto(s)
Hipoxia , Receptores de Endotelina , Embarazo , Femenino , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Atrasentán , Estudios de Seguimiento , Hipoxia/complicaciones , Placenta , Endotelina-1
9.
Int J Mol Sci ; 24(17)2023 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-37686430

RESUMEN

Prenatal hypoxia is associated with placental oxidative stress, leading to impaired fetal growth and an increased risk of cardiovascular disease in the adult offspring; however, the mechanisms are unknown. Alterations in mitochondrial function may result in impaired cardiac function in offspring. In this study, we hypothesized that cardiac mitochondrial function is impaired in adult offspring exposed to intrauterine hypoxia, which can be prevented by placental treatment with a nanoparticle-encapsulated mitochondrial antioxidant (nMitoQ). Cardiac mitochondrial respiration was assessed in 4-month-old rat offspring exposed to prenatal hypoxia (11% O2) from gestational day (GD)15-21 receiving either saline or nMitoQ on GD 15. Prenatal hypoxia did not alter cardiac mitochondrial oxidative phosphorylation capacity in the male offspring. In females, the NADH + succinate pathway capacity decreased by prenatal hypoxia and tended to be increased by nMitoQ. Prenatal hypoxia also decreased the succinate pathway capacity in females. nMitoQ treatment increased respiratory coupling efficiency in prenatal hypoxia-exposed female offspring. In conclusion, prenatal hypoxia impaired cardiac mitochondrial function in adult female offspring only, which was improved with prenatal nMitoQ treatment. Therefore, treatment strategies targeting placental oxidative stress in prenatal hypoxia may reduce the risk of cardiovascular disease in adult offspring by improving cardiac mitochondrial function in a sex-specific manner.


Asunto(s)
Antioxidantes , Enfermedades Cardiovasculares , Femenino , Masculino , Embarazo , Animales , Ratas , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Placenta , Vitaminas , Hipoxia/complicaciones , Hipoxia/tratamiento farmacológico , Mitocondrias , Succinatos
10.
Am J Physiol Heart Circ Physiol ; 322(3): H442-H450, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35119336

RESUMEN

Fetal hypoxia, a major consequence of complicated pregnancies, impairs offspring cardiac tolerance to ischemia-reperfusion (I/R) insult; however, the mechanisms remain unknown. Endothelin-1 (ET-1) signaling through the endothelin A receptors (ETA) is associated with cardiac dysfunction. We hypothesized that prenatal hypoxia exacerbates cardiac susceptibility to I/R via increased ET-1 and ETA levels, whereas ETA inhibition ameliorates this. Pregnant Sprague-Dawley rats were exposed to normoxia (21% O2) or hypoxia (11% O2) on gestational days 15-21. Offspring were aged to 4 mo, and hearts were aerobically perfused or subjected to ex vivo I/R, with or without preinfusion with an ETA antagonist (ABT-627). ET-1 levels were assessed with ELISA in aerobically perfused and post-I/R left ventricles (LV). ETA and ETB levels were assessed by Western blotting in nonperfused LV. As hypothesized, ABT-627 infusion tended to improve post-I/R recovery in hypoxic females (P = 0.0528); however, surprisingly, ABT-627 prevented post-I/R recovery only in the hypoxic males (P < 0.001). ET-1 levels were increased in post-I/R LV in both sexes regardless of the prenatal exposure (P < 0.01). ETA expression was similar among all groups, whereas ETB (isoform C) levels were decreased in prenatally hypoxic females (P < 0.05). In prenatally hypoxic males, ETA signaling may be essential for tolerance to I/R, whereas in prenatally hypoxic females, ETA may contribute to cardiac dysfunction. Our data illustrate that understanding the prenatal history has critical implications for treatment strategies in adult chronic diseases.NEW & NOTEWORTHY We demonstrated that prenatal hypoxia (a common condition of pregnancy) can have profound differential effects on treatment strategies in adult cardiovascular disease. Our data using a rat model of prenatal hypoxia demonstrated that, as adults, although inhibition of endothelin (ETA) receptors before an ex vivo cardiac ischemic insult improved recovery in females, it strikingly prevented recovery in males. Our data indicate a sex-specific effect of prenatal hypoxia on the cardiac ET-1 system in adult offspring.


Asunto(s)
Cardiopatías , Hipoxia , Animales , Atrasentán , Endotelina-1 , Endotelinas , Femenino , Isquemia/complicaciones , Masculino , Embarazo , Ratas , Ratas Sprague-Dawley , Receptor de Endotelina A
11.
FASEB J ; 35(2): e21338, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33428278

RESUMEN

Pregnancy complications associated with prenatal hypoxia lead to increased placental oxidative stress. Previous studies suggest that prenatal hypoxia can reduce mitochondrial respiratory capacity and mitochondrial fusion, which could lead to placental dysfunction and impaired fetal development. We developed a placenta-targeted treatment strategy using a mitochondrial antioxidant, MitoQ, encapsulated into nanoparticles (nMitoQ) to reduce placental oxidative stress and (indirectly) improve fetal outcomes. We hypothesized that, in a rat model of prenatal hypoxia, nMitoQ improves placental mitochondrial function and promotes mitochondrial fusion in both male and female placentae. Pregnant rats were treated with saline or nMitoQ on gestational day (GD) 15 and exposed to normoxia (21% O2 ) or hypoxia (11% O2 ) from GD15-21. On GD21, male and female placental labyrinth zones were collected for mitochondrial respirometry assessments, mitochondrial content, and markers of mitochondrial biogenesis, fusion and fission. Prenatal hypoxia reduced complex IV activity and fusion in male placentae, while nMitoQ improved complex IV activity in hypoxic male placentae. In female placentae, prenatal hypoxia decreased respiration through the S-pathway (complex II) and increased N-pathway (complex I) respiration, while nMitoQ increased fusion in hypoxic female placentae. No changes in mitochondrial content, biogenesis or fission were found. In conclusion, nMitoQ improved placental mitochondrial function in male and female placentae from fetuses exposed to prenatal hypoxia, which may contribute to improved placental function. However, the mechanisms (ie, changes in mitochondrial respiratory capacity and mitochondrial fusion) were distinct between the sexes. Treatment strategies targeted against placental oxidative stress could improve placental mitochondrial function in complicated pregnancies.


Asunto(s)
Antioxidantes/uso terapéutico , Hipoxia Fetal/tratamiento farmacológico , Mitocondrias/efectos de los fármacos , Nanopartículas/química , Compuestos Organofosforados/uso terapéutico , Placenta/efectos de los fármacos , Ubiquinona/análogos & derivados , Animales , Antioxidantes/administración & dosificación , Antioxidantes/farmacología , Respiración de la Célula , Femenino , Masculino , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Compuestos Organofosforados/administración & dosificación , Compuestos Organofosforados/farmacología , Placenta/metabolismo , Embarazo , Ratas , Ratas Sprague-Dawley , Factores Sexuales , Ubiquinona/administración & dosificación , Ubiquinona/farmacología , Ubiquinona/uso terapéutico
12.
Int J Mol Sci ; 23(16)2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-36012456

RESUMEN

Advanced maternal age (≥35 years) is associated with pregnancy complications. Aging impairs vascular reactivity and increases vascular stiffness. We hypothesized that uterine artery adaptations to pregnancy are impaired with advanced age. Uterine arteries of nonpregnant and pregnant (gestational day 20) young (4 months) and aged (9 months; ~35 years in humans) Sprague-Dawley rats were isolated. Functional (myogenic tone, n = 6−10/group) and mechanical (circumferential stress-strain, n = 10−24/group) properties were assessed using pressure myography and further assessment of elastin and collagen (histology, n = 4−6/group), and matrix metalloproteinase-2 (MMP-2, zymography, n = 6/group). Aged dams had worse pregnancy outcomes, including smaller litters and fetal weights (both p < 0.0001). Only in arteries of pregnant young dams did higher pressures (>100 mmHg) cause forced vasodilation. Across the whole pressure range (4−160 mmHg), myogenic behavior was enhanced in aged vs. young pregnant dams (p = 0.0010). Circumferential stress and strain increased with pregnancy in young and aged dams (p < 0.0001), but strain remained lower in aged vs. young dams (p < 0.05). Arteries from young nonpregnant rats had greater collagen:elastin ratios than the other groups (p < 0.05). In aged rats only, pregnancy increased MMP-2 active capacity. Altered functional and structural vascular adaptations to pregnancy may impair fetal growth and development with advanced maternal age.


Asunto(s)
Metaloproteinasa 2 de la Matriz , Arteria Uterina , Animales , Colágeno , Elastina , Femenino , Humanos , Edad Materna , Embarazo , Ratas , Ratas Sprague-Dawley
13.
Pharmacol Res ; 165: 105461, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33513355

RESUMEN

Offspring born from complicated pregnancies are at greater risk of cardiovascular disease in adulthood. Prenatal hypoxia is a common pregnancy complication that results in placental oxidative stress and impairs fetal development. Adult offspring exposed to hypoxia during fetal life are more susceptible to develop cardiac dysfunction, and show decreased cardiac tolerance to an ischemia/reperfusion (I/R) insult. To improve offspring cardiac outcomes, we have assessed the use of a placenta-targeted intervention during hypoxic pregnancies, by encapsulating the mitochondrial antioxidant MitoQ into nanoparticles (nMitoQ). We hypothesized that maternal nMitoQ treatment during hypoxic pregnancies improves cardiac tolerance to I/R insult in adult male and female offspring. Pregnant Sprague-Dawley rats were exposed to normoxia (21 % O2) or hypoxia (11 % O2) from gestational day 15-20, after injection with 100 µL saline or nMitoQ (125 µM) on GD15 (n=6-8/group). Male and female offspring were aged to 4 months. Both male and female offspring from hypoxic pregnancies showed reduced cardiac tolerance to I/R (assessed ex vivo using the isolated working heart technique) which was ameliorated by nMitoQ treatment. To identify potential molecular mechanisms for the changes in cardiac tolerance to I/R, cardiac levels/phosphorylation of proteins important for intracellular Ca2+ cycling were assessed with Western blotting. In prenatally hypoxic male offspring, improved cardiac recovery from I/R by nMitoQ was accompanied by increased cardiac phospholamban and phosphatase 2Ce levels, and a trend to decreased Ca2+/calmodulin-dependent protein kinase IIδ phosphorylation. In contrast, in female offspring, nMitoQ treatment in hypoxic pregnancies increased phospholamban and protein kinase Cε phosphorylation. Maternal nMitoQ treatment improves cardiac tolerance to I/R insult in adult offspring and thus has the potential to improve the later-life trajectory of cardiovascular health of adult offspring born from pregnancies complicated by prenatal hypoxia.


Asunto(s)
Enfermedades Cardiovasculares/metabolismo , Hipoxia/metabolismo , Compuestos Organofosforados/administración & dosificación , Placenta/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Daño por Reperfusión/metabolismo , Ubiquinona/análogos & derivados , Factores de Edad , Animales , Antioxidantes/administración & dosificación , Enfermedades Cardiovasculares/prevención & control , Femenino , Hipoxia/tratamiento farmacológico , Masculino , Nanopartículas/administración & dosificación , Placenta/efectos de los fármacos , Embarazo , Efectos Tardíos de la Exposición Prenatal/tratamiento farmacológico , Ratas , Ratas Sprague-Dawley , Daño por Reperfusión/tratamiento farmacológico , Ubiquinona/administración & dosificación
14.
Clin Sci (Lond) ; 134(22): 3023-3046, 2020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-33231619

RESUMEN

The developmental origins of health and disease (DOHaD) is a concept linking pre- and early postnatal exposures to environmental influences with long-term health outcomes and susceptibility to disease. It has provided a new perspective on the etiology and evolution of chronic disease risk, and as such is a classic example of a paradigm shift. What first emerged as the 'fetal origins of disease', the evolution of the DOHaD conceptual framework is a storied one in which preclinical studies played an important role. With its potential clinical applications of DOHaD, there is increasing desire to leverage this growing body of preclinical work to improve health outcomes in populations all over the world. In this review, we provide a perspective on the values and limitations of preclinical research, and the challenges that impede its translation. The review focuses largely on the developmental programming of cardiovascular function and begins with a brief discussion on the emergence of the 'Barker hypothesis', and its subsequent evolution into the more-encompassing DOHaD framework. We then discuss some fundamental pathophysiological processes by which developmental programming may occur, and attempt to define these as 'instigator' and 'effector' mechanisms, according to their role in early adversity. We conclude with a brief discussion of some notable challenges that hinder the translation of this preclinical work.


Asunto(s)
Fenómenos Fisiológicos Cardiovasculares , Desarrollo Embrionario , Investigación Biomédica Traslacional , Adaptación Fisiológica , Animales , Enfermedad , Salud , Humanos
15.
Clin Sci (Lond) ; 134(17): 2295-2313, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32856035

RESUMEN

The lectin-like oxidized low-density-lipoprotein (oxLDL) receptor-1 (LOX-1) has been shown to induce angiotensin II (AngII) type 1 receptor (AT1) activation, contributing to vascular dysfunction. Preeclampsia is a pregnancy complication characterized by vascular dysfunction and increased LOX-1 and AT1 activation; however, whether LOX-1 and AT1 activity contributes to vascular dysfunction in preeclampsia is unknown. We hypothesized that increased oxLDL levels during pregnancy lead to LOX-1 activation and subsequent AT1 activation, resulting in vascular dysfunction. Pregnant wild-type (WT) and transgenic LOX-1 overexpressing (LOX-1tg) mice were fed a control diet (CD) or high-cholesterol diet (HCD, to impair vascular function) between gestational day (GD) 13.5-GD18.5. On GD18.5, AngII-induced vasoconstriction and methylcholine (MCh)-induced endothelium-dependent vasodilation responses were assessed in aortas and uterine arteries. HCD decreased fetal weight and increased circulating oxLDL/cholesterol levels in WT, but not in LOX-1tg mice. HCD did not alter AngII responsiveness or AT1 expression in both vascular beds; however, AngII responsiveness and AT1 expression were lower in aortas from LOX-1tg compared with WT mice. In aortas from WT-CD mice, acute oxLDL exposure induced AT1-mediated vasoconstriction via LOX-1. HCD impaired endothelium-dependent vasodilation and increased superoxide levels in WT aortas, but not uterine arteries. Moreover, in WT-CD mice oxLDL decreased MCh sensitivity in both vascular beds, partially via LOX-1. In summary, HCD impaired pregnancy outcomes and vascular function, and oxLDL-induced LOX-1 activation may contribute to vascular dysfunction via AT1. Our study suggests that LOX-1 could be a potential target to prevent adverse outcomes associated with vascular dysfunction in preeclampsia.


Asunto(s)
Lipoproteínas LDL/farmacología , Receptor de Angiotensina Tipo 1/metabolismo , Receptores Depuradores de Clase E/metabolismo , Enfermedades Vasculares/fisiopatología , Angiotensina II , Animales , Aorta/efectos de los fármacos , Aorta/patología , Aorta/fisiopatología , Peso Corporal/efectos de los fármacos , Colesterol en la Dieta , Colina/análogos & derivados , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/patología , Endotelio Vascular/fisiopatología , Femenino , Feto/efectos de los fármacos , Feto/patología , Ratones Transgénicos , Estrés Oxidativo/efectos de los fármacos , Embarazo , Superóxidos/metabolismo , Arteria Uterina/patología , Arteria Uterina/fisiopatología , Enfermedades Vasculares/patología , Vasoconstricción/efectos de los fármacos , Vasodilatación/efectos de los fármacos
16.
Exp Physiol ; 105(9): 1507-1514, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32749725

RESUMEN

NEW FINDINGS: What is the central question of this study? Does treatment of hypoxic dams with a placenta-targeted antioxidant prevent the release of placenta-derived factors that impair maturation or growth of fetal cardiomyocytes in vitro? What is the main finding and its importance? Factors released from hypoxic placentae impaired fetal cardiomyocyte maturation (induced terminal differentiation) and growth (increased cell size) in vitro, which was prevented by maternal treatment with a placenta-targeted antioxidant (nMitoQ). Moreover, there were no sex differences in the effects of placental factors on fetal cardiomyocyte maturation and growth. Overall, our data suggest that treatment targeted against placental oxidative stress could prevent fetal programming of cardiac diseases via the release of placental factors. ABSTRACT: Pregnancy complications associated with placental oxidative stress may impair fetal organ development through the release of placenta-derived factors into the fetal circulation. We assessed the effect of factors secreted from placentae previously exposed to prenatal hypoxia on fetal cardiomyocyte development and developed a treatment strategy that targets placental oxidative stress by encapsulating the antioxidant MitoQ into nanoparticles (nMitoQ). We used a rat model of prenatal hypoxia (gestational day (GD) 15-21), which was treated with saline or nMitoQ on GD15. On GD21, placentae were harvested, placed in culture, and conditioned medium (containing placenta-derived factors) was collected after 24 h. This conditioned medium was then added to cultured cardiomyocytes from control dam fetuses. Conditioned medium from prenatally hypoxic placentae increased the percentage of binucleated cardiomyocytes (marker of terminal differentiation) and the size of mononucleated and binucleated cardiomyocytes (sign of hypertrophy), effects that were prevented by nMitoQ treatment. Our data suggest that factors derived from placentae previously exposed to prenatal hypoxia lead to abnormal fetal cardiomyocyte development, and show that treatment against placental oxidative stress may prevent fetal programming of cardiac disease.


Asunto(s)
Antioxidantes/farmacología , Desarrollo Fetal/efectos de los fármacos , Hipoxia/tratamiento farmacológico , Miocitos Cardíacos/fisiología , Placenta/fisiología , Animales , Células Cultivadas , Medios de Cultivo Condicionados , Femenino , Masculino , Compuestos Organofosforados/farmacología , Estrés Oxidativo , Embarazo , Ratas , Ratas Sprague-Dawley , Ubiquinona/análogos & derivados , Ubiquinona/farmacología
17.
Pharmacol Res ; 157: 104836, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32344051

RESUMEN

The Developmental Origins of Health and Disease (DOHaD) theory states that a sub-optimal prenatal and early postnatal environment during development leads to an increased risk of long-term development of adult chronic diseases. Developmental programming of disease has the potential to greatly impact the health of our population. Therefore, research has focused on the development of primary treatment strategies and/or therapeutic interventions for individuals who are at increased risk, with the objective to reverse or prevent later life onset of chronic disease in the offspring born from complicated pregnancies. Many studies have focused on systemic treatments and/or interventions in complicated pregnancies to improve offspring outcomes. However, there are limitations to systemic maternal/prenatal treatments, as most of the treatments are able to cross the placenta and have potential adverse off-target effects on the developing fetus. The placenta serves as the primary interface between mother and fetus, and placental dysfunction in complicated pregnancies has been associated with impaired fetal development and negative impact on offspring health. Therefore, recent research has focused on treatment strategies that specifically target the placenta to improve placental function and prevent passage of prenatal therapeutics and/or treatments into the fetal circulation, thus avoiding any potential adverse off-target effects on the fetus. This article reviews the currently available knowledge on treatment strategies and/or therapeutics that specifically target the placenta with the goal of improving pregnancy outcomes with a focus on long-term health of the offspring born of complicated pregnancies.


Asunto(s)
Desarrollo Fetal/efectos de los fármacos , Terapia Genética , Placenta/efectos de los fármacos , Complicaciones del Embarazo/terapia , Animales , Portadores de Fármacos , Composición de Medicamentos , Femenino , Técnicas de Transferencia de Gen , Terapia Genética/efectos adversos , Humanos , Exposición Materna , Intercambio Materno-Fetal/efectos de los fármacos , Placenta/fisiopatología , Embarazo , Complicaciones del Embarazo/diagnóstico , Complicaciones del Embarazo/genética , Complicaciones del Embarazo/fisiopatología , Efectos Tardíos de la Exposición Prenatal
18.
J Physiol ; 597(14): 3687-3696, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31106429

RESUMEN

KEY POINTS: Normotensive pregnancy is associated with elevated sympathetic nervous system activity yet normal or reduced blood pressure. It represents a unique period of apparent healthy sympathetic hyperactivity. The present study models the blood pressure and heart rate (ECG R-R interval) responses to fluctuations in sympathetic nervous system activity aiming to understand neurocardiovascular transduction. The reported data clearly demonstrate that transduction of sympathetic nervous system signalling to systemic cardiovascular outcomes is reduced in normotensive pregnancy. These data are important for understanding how blood pressure regulation adapts during normotensive pregnancy and set the foundation for exploring similar mechanisms in hypertensive pregnancies. ABSTRACT: Previously, we described sympathetic nervous system hyperactivity yet decreased blood pressure responses to stress in normotensive pregnancy. To address the hypothesis that pregnant women have blunted neurocardiovascular transduction we assessed the relationship between spontaneous bursts of sympathetic nerve activity (SNA) and fluctuations in mean arterial blood pressure and R-R interval. Resting SNA, blood pressure and ECG were obtained in pregnant (third trimester, n = 18) and non-pregnant (n = 18) women matched for age and pre-/non-pregnant body mass index. Custom software modelled beat-by-beat pressure (photoplethysmography) and R-R interval in relation to sequences of SNA bursts and non-bursts (peroneal microneurography). Sequences were grouped by the number of bursts and non-bursts [singlets, doublets, triplets and quadruplet (four or more)] and mean blood pressure and R-R interval were tracked for 15 subsequent cardiac cycles. Similar sequences were overlaid and averaged. Peak mean pressure in relation to sequences of SNA was reduced in pregnant vs. non-pregnant women (doublets: 1.6 ± 1.1 mmHg vs. 3.6 ± 3.1 mmHg, P < 0.05; triplets: 2.4 ± 1.2 mmHg vs. 3.4 ± 2.1 mmHg, P < 0.05; quadruplets: 3.0 ± 1.0 mmHg vs. 5.5 ± 3.7 mmHg, P < 0.05). The nadir R-R interval following burst sequences was also smaller in pregnant vs. non-pregnant women (singlets: -0.01 ± 0.01 s vs. -0.04 ± 0.04 s, P < 0.05; doublets: -0.02 ± 0.03 s vs. -0.05 ± 0.04 s, P < 0.05; triplets: -0.02 ± 0.01 s vs. -0.07 ± 0.04 s, P < 0.05; quadruplets: -0.01 ± 0.01 s vs. -0.09 ± 0.09 s, P < 0.05). There were no differences between groups in the mean arterial pressure and R-R interval responses to non-burst sequences. Our data clearly indicate blunted systemic neurocardiovascular transduction during normotensive pregnancy. We propose that blunted transduction is a positive adaptation protecting pregnant women from the cardiovascular consequences of sympathetic hyperactivity.


Asunto(s)
Sistema Nervioso Simpático/fisiología , Adulto , Barorreflejo/fisiología , Presión Sanguínea/fisiología , Femenino , Frecuencia Cardíaca/fisiología , Humanos , Embarazo , Tercer Trimestre del Embarazo/fisiología , Descanso/fisiología
19.
Am J Physiol Heart Circ Physiol ; 317(2): H387-H394, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31199185

RESUMEN

Delaying pregnancy, which is on the rise, may increase the risk of cardiovascular disease in both women and their children. The physiological mechanisms that lead to these effects are not fully understood but may involve inadequate adaptations of the maternal cardiovascular system to pregnancy. Indeed, there is abundant evidence in the literature that a fetus developing in a suboptimal in utero environment (such as in pregnancies complicated by fetal growth restriction, preterm birth, and/or preeclampsia) is at an increased risk of cardiovascular disease in adulthood, the developmental origins of health and disease theory. Although women of advanced age are at a significantly increased risk of pregnancy complications, there is limited information as to whether advanced maternal age constitutes an added stressor on the prenatal environment of the fetus, and whether or not this is secondary to impaired cardiovascular function during pregnancy. This review summarizes the current literature available on the impact of advanced maternal age on cardiovascular adaptations to pregnancy and the role of maternal age on long-term health risks for both the mother and offspring.


Asunto(s)
Sistema Cardiovascular/fisiopatología , Hemodinámica , Edad Materna , Salud Materna , Placenta/irrigación sanguínea , Complicaciones Cardiovasculares del Embarazo/etiología , Efectos Tardíos de la Exposición Prenatal , Adaptación Fisiológica , Adulto , Animales , Sistema Cardiovascular/crecimiento & desarrollo , Femenino , Estado de Salud , Humanos , Persona de Mediana Edad , Circulación Placentaria , Embarazo , Complicaciones Cardiovasculares del Embarazo/fisiopatología , Medición de Riesgo , Factores de Riesgo
20.
J Physiol ; 596(23): 5807-5821, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29882308

RESUMEN

KEY POINTS: Advanced maternal age increases the risk of pregnancy complications such as fetal growth restriction, hypertension and premature birth. Offspring born from compromised pregnancies are at increased risk of cardiovascular disease as adults. However, the effect of advanced maternal age on later-onset disease in offspring has not been investigated. In adulthood, male but not female offspring born to dams of advanced maternal age showed impaired recovery from cardiac ischaemia/reperfusion injury. Endothelium-dependent relaxation was also impaired in male but not female offspring born from aged dams. Oxidative stress may play a role in the developmental programming of cardiovascular disease in this model. Given the increasing trend toward delayed parenthood, these findings have significant population and health care implications and warrant further investigation. ABSTRACT: Exposure to prenatal stressors, including hypoxia, micro- and macronutrient deficiency, and maternal stress, increases the risk of cardiovascular disease in adulthood. It is unclear whether being born from a mother of advanced maternal age (≥35 years old) may also constitute a prenatal stress with cardiovascular consequences in adulthood. We previously demonstrated growth restriction in fetuses from a rat model of advanced maternal age, suggesting exposure to a compromised in utero environment. Thus, we hypothesized that male and female offspring from aged dams would exhibit impaired cardiovascular function as adults. In 4-month-old offspring, we observed impaired endothelium-dependent relaxation in male (P < 0.05) but not female offspring born from aged dams. The anti-oxidant polyethylene glycol superoxide dismutase improved relaxation only in arteries from male offspring of aged dams (ΔEmax : young dam -1.63 ± 0.80 vs. aged dam 11.75 ± 4.23, P < 0.05). Furthermore, endothelium-derived hyperpolarization-dependent relaxation was reduced in male but not female offspring of aged dams (P < 0.05). Interestingly, there was a significant increase in nitric oxide contribution to relaxation in females born from aged dams (ΔEmax : young dam -24.8 ± 12.1 vs. aged dam -68.7 ± 7.7, P < 0.05), which was not observed in males. Recovery of cardiac function following an ischaemia-reperfusion insult in male offspring born from aged dams was reduced by ∼57% (P < 0.001), an effect that was not evident in female offspring. These data indicate that offspring born from aged dams have an altered cardiovascular risk profile that is sex-specific. Given the increasing trend toward delaying pregnancy, these findings may have significant population and health care implications and warrant further investigation.


Asunto(s)
Enfermedades Cardiovasculares/fisiopatología , Endotelio Vascular/fisiología , Edad Materna , Envejecimiento/fisiología , Animales , Presión Sanguínea , Femenino , Corazón/fisiología , Masculino , Estrés Oxidativo , Embarazo , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA