Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Learn Mem ; 31(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38862171

RESUMEN

Across animal species, dopamine-operated memory systems comprise anatomically segregated, functionally diverse subsystems. Although individual subsystems could operate independently to support distinct types of memory, the logical interplay between subsystems is expected to enable more complex memory processing by allowing existing memory to influence future learning. Recent comprehensive ultrastructural analysis of the Drosophila mushroom body revealed intricate networks interconnecting the dopamine subsystems-the mushroom body compartments. Here, we review the functions of some of these connections that are beginning to be understood. Memory consolidation is mediated by two different forms of network: A recurrent feedback loop within a compartment maintains sustained dopamine activity required for consolidation, whereas feed-forward connections across compartments allow short-term memory formation in one compartment to open the gate for long-term memory formation in another compartment. Extinction and reversal of aversive memory rely on a similar feed-forward circuit motif that signals omission of punishment as a reward, which triggers plasticity that counteracts the original aversive memory trace. Finally, indirect feed-forward connections from a long-term memory compartment to short-term memory compartments mediate higher-order conditioning. Collectively, these emerging studies indicate that feedback control and hierarchical connectivity allow the dopamine subsystems to work cooperatively to support diverse and complex forms of learning.


Asunto(s)
Dopamina , Cuerpos Pedunculados , Animales , Dopamina/metabolismo , Dopamina/fisiología , Cuerpos Pedunculados/fisiología , Cuerpos Pedunculados/metabolismo , Drosophila/fisiología , Retroalimentación Fisiológica/fisiología , Consolidación de la Memoria/fisiología , Red Nerviosa/fisiología , Red Nerviosa/metabolismo , Neuronas Dopaminérgicas/fisiología , Neuronas Dopaminérgicas/metabolismo , Vías Nerviosas/fisiología
2.
J Physiol ; 602(9): 2019-2045, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38488688

RESUMEN

Activation of the cAMP pathway is one of the common mechanisms underlying long-term potentiation (LTP). In the Drosophila mushroom body, simultaneous activation of odour-coding Kenyon cells (KCs) and reinforcement-coding dopaminergic neurons activates adenylyl cyclase in KC presynaptic terminals, which is believed to trigger synaptic plasticity underlying olfactory associative learning. However, learning induces long-term depression (LTD) at these synapses, contradicting the universal role of cAMP as a facilitator of transmission. Here, we developed a system to electrophysiologically monitor both short-term and long-term synaptic plasticity at KC output synapses and demonstrated that they are indeed an exception in which activation of the cAMP-protein kinase A pathway induces LTD. Contrary to the prevailing model, our cAMP imaging found no evidence for synergistic action of dopamine and KC activity on cAMP synthesis. Furthermore, we found that forskolin-induced cAMP increase alone was insufficient for plasticity induction; it additionally required simultaneous KC activation to replicate the presynaptic LTD induced by pairing with dopamine. On the other hand, activation of the cGMP pathway paired with KC activation induced slowly developing LTP, proving antagonistic actions of the two second-messenger pathways predicted by behavioural study. Finally, KC subtype-specific interrogation of synapses revealed that different KC subtypes exhibit distinct plasticity duration even among synapses on the same postsynaptic neuron. Thus, our work not only revises the role of cAMP in synaptic plasticity by uncovering the unexpected convergence point of the cAMP pathway and neuronal activity, but also establishes the methods to address physiological mechanisms of synaptic plasticity in this important model. KEY POINTS: Although presynaptic cAMP increase generally facilitates synapses, olfactory associative learning in Drosophila, which depends on dopamine and cAMP signalling genes, induces long-term depression (LTD) at the mushroom body output synapses. By combining electrophysiology, pharmacology and optogenetics, we directly demonstrate that these synapses are an exception where activation of the cAMP-protein kinase A pathway leads to presynaptic LTD. Dopamine- or forskolin-induced cAMP increase alone is not sufficient for LTD induction; neuronal activity, which has been believed to trigger cAMP synthesis in synergy with dopamine input, is required in the downstream pathway of cAMP. In contrast to cAMP, activation of the cGMP pathway paired with neuronal activity induces presynaptic long-term potentiation, which explains behaviourally observed opposing actions of transmitters co-released by dopaminergic neurons. Our work not only revises the role of cAMP in synaptic plasticity, but also provides essential methods to address physiological mechanisms of synaptic plasticity in this important model system.


Asunto(s)
AMP Cíclico , Cuerpos Pedunculados , Plasticidad Neuronal , Animales , Cuerpos Pedunculados/fisiología , AMP Cíclico/metabolismo , Plasticidad Neuronal/fisiología , Dopamina , Potenciación a Largo Plazo/fisiología , Drosophila melanogaster/fisiología , GMP Cíclico/metabolismo , Sinapsis/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Colforsina/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA