Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Asunto principal
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 5444, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37012265

RESUMEN

Crop improvement is a key innovation area in the pursuit of sustainable food systems. However, realising its potential requires integration of the needs and priorities of all agri-food chain stakeholders. In this study, we provide a multi-stakeholder perspective on the role of crop improvement in future-proofing the European food system. We engaged agri-business, farm- and consumer-level stakeholders, and plant scientists through an online survey and focus groups. Four of each group's top five priorities were shared and related to environmental sustainability goals (water, nitrogen and phosphorus efficiency, and heat stress). Consensus was identified on issues including considering existing alternatives to plant breeding (e.g. management strategies), minimising trade-offs, and addressing geographical variation in needs. We conducted a rapid evidence synthesis on the impacts of priority crop improvement options, highlighting the urgent need for further research examining downstream sustainability impacts to identify concrete targets for plant breeding innovation as a food systems solution.


Asunto(s)
Fitomejoramiento , Grupos Focales , Granjas
2.
Sci Rep ; 7(1): 1890, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28507306

RESUMEN

Fertilization of nitrogen (N)-limited ecosystems by anthropogenic atmospheric nitrogen deposition (Ndep) may promote CO2 removal from the atmosphere, thereby buffering human effects on global radiative forcing. We used the biogeochemical ecosystem model N14CP, which considers interactions among C (carbon), N and P (phosphorus), driven by a new reconstruction of historical Ndep, to assess the responses of soil organic carbon (SOC) stocks in British semi-natural landscapes to anthropogenic change. We calculate that increased net primary production due to Ndep has enhanced detrital inputs of C to soils, causing an average increase of 1.2 kgCm-2 (c. 10%) in soil SOC over the period 1750-2010. The simulation results are consistent with observed changes in topsoil SOC concentration in the late 20th Century, derived from sample-resample measurements at nearly 2000 field sites. More than half (57%) of the additional topsoil SOC is predicted to have a short turnover time (c. 20 years), and will therefore be sensitive to future changes in Ndep. The results are the first to validate model predictions of Ndep effects against observations of SOC at a regional field scale. They demonstrate the importance of long-term macronutrient interactions and the transitory nature of soil responses in the terrestrial C cycle.

3.
Sci Total Environ ; 572: 1485-1495, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27012185

RESUMEN

Understanding changes in plant-soil C, N and P using data alone is difficult due to the linkages between carbon, nitrogen and phosphorus cycles (C, N and P), and multiple changing long-term drivers (e.g. climate, land-use, and atmospheric N deposition). Hence, dynamic models are a vital tool for disentangling these drivers, helping us understand the dominant processes and drivers and predict future change. However, it is essential that models are tested against data if their outputs are to be concluded upon with confidence. Here, a simulation of C, N and P cycles using the N14CP model was compared with time-series observations of C, N and P in soils and biomass from the Rothamsted Research long-term experiments spanning 150years, providing an unprecedented temporal integrated test of such a model. N14CP reproduced broad trends in soil organic matter (SOM) C, N and P, vegetation biomass and N and P leaching. Subsequently, the model was used to decouple the effects of land management and elevated nitrogen deposition in these experiments. Elevated N deposition over the last 150years is shown to have increased net primary productivity (NPP) 4.5-fold and total carbon sequestration 5-fold at the Geescroft Wilderness experiment, which was re-wilded to woodland in 1886. In contrast, the model predicts that for cropped grassland conditions at the Park Grass site, elevated N deposition has very little effect on SOM, as increases in NPP are diverted from the soil. More broadly, these results suggest that N deposition is likely to have had a large effect on SOM and NPP in northern temperate and boreal semi-natural grasslands and forests. However, in cropped and grazed systems in the same region, whilst NPP may have been supported in part by elevated N deposition, declines in SOM may not have been appreciably counteracted by increased N availability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA