Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Bioinformatics ; 39(7)2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37364005

RESUMEN

MOTIVATION: Liquid Chromatography Tandem Mass Spectrometry experiments aim to produce high-quality fragmentation spectra, which can be used to annotate metabolites. However, current Data-Dependent Acquisition approaches may fail to collect spectra of sufficient quality and quantity for experimental outcomes, and extend poorly across multiple samples by failing to share information across samples or by requiring manual expert input. RESULTS: We present TopNEXt, a real-time scan prioritization framework that improves data acquisition in multi-sample Liquid Chromatography Tandem Mass Spectrometry metabolomics experiments. TopNEXt extends traditional Data-Dependent Acquisition exclusion methods across multiple samples by using a Region of Interest and intensity-based scoring system. Through both simulated and lab experiments, we show that methods incorporating these novel concepts acquire fragmentation spectra for an additional 10% of our set of target peaks and with an additional 20% of acquisition intensity. By increasing the quality and quantity of fragmentation spectra, TopNEXt can help improve metabolite identification with a potential impact across a variety of experimental contexts. AVAILABILITY AND IMPLEMENTATION: TopNEXt is implemented as part of the ViMMS framework and the latest version can be found at https://github.com/glasgowcompbio/vimms. A stable version used to produce our results can be found at 10.5281/zenodo.7468914.


Asunto(s)
Metabolómica , Espectrometría de Masas/métodos , Cromatografía Liquida/métodos , Metabolómica/métodos
2.
PLoS Comput Biol ; 19(3): e1010885, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36972311

RESUMEN

Surface antigens of pathogens are commonly targeted by vaccine-elicited antibodies but antigenic variability, notably in RNA viruses such as influenza, HIV and SARS-CoV-2, pose challenges for control by vaccination. For example, influenza A(H3N2) entered the human population in 1968 causing a pandemic and has since been monitored, along with other seasonal influenza viruses, for the emergence of antigenic drift variants through intensive global surveillance and laboratory characterisation. Statistical models of the relationship between genetic differences among viruses and their antigenic similarity provide useful information to inform vaccine development, though accurate identification of causative mutations is complicated by highly correlated genetic signals that arise due to the evolutionary process. Here, using a sparse hierarchical Bayesian analogue of an experimentally validated model for integrating genetic and antigenic data, we identify the genetic changes in influenza A(H3N2) virus that underpin antigenic drift. We show that incorporating protein structural data into variable selection helps resolve ambiguities arising due to correlated signals, with the proportion of variables representing haemagglutinin positions decisively included, or excluded, increased from 59.8% to 72.4%. The accuracy of variable selection judged by proximity to experimentally determined antigenic sites was improved simultaneously. Structure-guided variable selection thus improves confidence in the identification of genetic explanations of antigenic variation and we also show that prioritising the identification of causative mutations is not detrimental to the predictive capability of the analysis. Indeed, incorporating structural information into variable selection resulted in a model that could more accurately predict antigenic assay titres for phenotypically-uncharacterised virus from genetic sequence. Combined, these analyses have the potential to inform choices of reference viruses, the targeting of laboratory assays, and predictions of the evolutionary success of different genotypes, and can therefore be used to inform vaccine selection processes.


Asunto(s)
COVID-19 , Virus de la Influenza A , Gripe Humana , Humanos , Gripe Humana/prevención & control , Subtipo H3N2 del Virus de la Influenza A/genética , Teorema de Bayes , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , SARS-CoV-2 , Antígenos Virales/genética , Genotipo , Fenotipo , Anticuerpos Antivirales/genética
3.
Anal Chem ; 93(14): 5676-5683, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33784814

RESUMEN

Tandem mass spectrometry (LC-MS/MS) is widely used to identify unknown ions in untargeted metabolomics. Data-dependent acquisition (DDA) chooses which ions to fragment based upon intensities observed in MS1 survey scans and typically only fragments a small subset of the ions present. Despite this inefficiency, relatively little work has addressed the development of new DDA methods, partly due to the high overhead associated with running the many extracts necessary to optimize approaches in busy MS facilities. In this work, we first provide theoretical results that show how much improvement is possible over current DDA strategies. We then describe an in silico framework for fast and cost-efficient development of new DDA strategies using a previously developed virtual metabolomics mass spectrometer (ViMMS). Additional functionality is added to ViMMS to allow methods to be used both in simulation and on real samples via an Instrument Application Programming Interface (IAPI). We demonstrate this framework through the development and optimization of two new DDA methods that introduce new advanced ion prioritization strategies. Upon application of these developed methods to two complex metabolite mixtures, our results show that they are able to fragment more unique ions than standard DDA strategies.

4.
Front Mol Biosci ; 10: 1130781, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36959982

RESUMEN

Data-Dependent and Data-Independent Acquisition modes (DDA and DIA, respectively) are both widely used to acquire MS2 spectra in untargeted liquid chromatography tandem mass spectrometry (LC-MS/MS) metabolomics analyses. Despite their wide use, little work has been attempted to systematically compare their MS/MS spectral annotation performance in untargeted settings due to the lack of ground truth and the costs involved in running a large number of acquisitions. Here, we present a systematic in silico comparison of these two acquisition methods in untargeted metabolomics by extending our Virtual Metabolomics Mass Spectrometer (ViMMS) framework with a DIA module. Our results show that the performance of these methods varies with the average number of co-eluting ions as the most important factor. At low numbers, DIA outperforms DDA, but at higher numbers, DDA has an advantage as DIA can no longer deal with the large amount of overlapping ion chromatograms. Results from simulation were further validated on an actual mass spectrometer, demonstrating that using ViMMS we can draw conclusions from simulation that translate well into the real world. The versatility of the Virtual Metabolomics Mass Spectrometer (ViMMS) framework in simulating different parameters of both Data-Dependent and Data-Independent Acquisition (DDA and DIA) modes is a key advantage of this work. Researchers can easily explore and compare the performance of different acquisition methods within the ViMMS framework, without the need for expensive and time-consuming experiments with real experimental data. By identifying the strengths and limitations of each acquisition method, researchers can optimize their choice and obtain more accurate and robust results. Furthermore, the ability to simulate and validate results using the ViMMS framework can save significant time and resources, as it eliminates the need for numerous experiments. This work not only provides valuable insights into the performance of DDA and DIA, but it also opens the door for further advancements in LC-MS/MS data acquisition methods.

5.
EBioMedicine ; 86: 104343, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36371989

RESUMEN

BACKGROUND: Rituximab is widely used to treat autoimmunity but clinical response varies. Efficacy is determined by the efficiency of B-cell depletion, which may depend on various Fc gamma receptor (FcγR)-dependent mechanisms. Study of FcγR is challenging due to the complexity of the FCGR genetic locus. We sought to assess the effect of FCGR variants on clinical response, B-cell depletion and NK-cell-mediated killing in rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). METHODS: A longitudinal cohort study was conducted in 835 patients [RA = 573; SLE = 262]. Clinical outcome measures were two-component disease activity score in 28-joints (2C-DAS28CRP) for RA and British Isles Lupus Assessment Group (BILAG)-2004 major clinical response (MCR) for SLE at 6 months. B-cells were evaluated by highly-sensitive flow cytometry. Single nucleotide polymorphism and copy number variation for genes encoding five FcγRs were measured using multiplex ligation-dependent probe amplification. Ex vivo studies assessed NK-cell antibody-dependent cellular cytotoxicity (ADCC) and FcγR expression. FINDINGS: In RA, carriage of FCGR3A-158V and increased FCGR3A-158V copies were associated with greater 2C-DAS28CRP response (adjusted for baseline 2C-DAS28CRP). In SLE, MCR was associated with increased FCGR3A-158V, OR 1.64 (95% CI 1.12-2.41) and FCGR2C-ORF OR 1.93 (95% CI 1.09-3.40) copies. 236/413 (57%) patients with B-cell data achieved complete depletion. Homozygosity for FCGR3A-158V and increased FCGR3A-158V copies were associated with complete depletion in combined analyses. FCGR3A genotype was associated with rituximab-induced ADCC, and increased NK-cell FcγRIIIa expression was associated with improved clinical response and depletion in vivo. Furthermore, disease status and concomitant therapies impacted both NK-cell FcγRIIIa expression and ADCC. INTERPRETATION: FcγRIIIa is the major low affinity FcγR associated with rituximab response. Increased copies of the FCGR3A-158V allele (higher affinity for IgG1), influences clinical and biological responses to rituximab in autoimmunity. Enhancing FcγR-effector functions could improve the next generation of CD20-depleting therapies and genotyping may stratify patients for optimal treatment protocols. FUNDING: Medical Research Council, National Institute for Health and Care Research, Versus Arthritis.


Asunto(s)
Lupus Eritematoso Sistémico , Receptores de IgG , Rituximab , Humanos , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/genética , Autoinmunidad/efectos de los fármacos , Autoinmunidad/genética , Variaciones en el Número de Copia de ADN , Genotipo , Estudios Longitudinales , Lupus Eritematoso Sistémico/tratamiento farmacológico , Lupus Eritematoso Sistémico/genética , Receptores de IgG/efectos de los fármacos , Receptores de IgG/genética , Receptores de IgG/metabolismo , Rituximab/farmacología , Rituximab/uso terapéutico
7.
Int J Epidemiol ; 49(6): 2074-2082, 2021 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-32380551

RESUMEN

Prediction and causal explanation are fundamentally distinct tasks of data analysis. In health applications, this difference can be understood in terms of the difference between prognosis (prediction) and prevention/treatment (causal explanation). Nevertheless, these two concepts are often conflated in practice. We use the framework of generalized linear models (GLMs) to illustrate that predictive and causal queries require distinct processes for their application and subsequent interpretation of results. In particular, we identify five primary ways in which GLMs for prediction differ from GLMs for causal inference: (i) the covariates that should be considered for inclusion in (and possibly exclusion from) the model; (ii) how a suitable set of covariates to include in the model is determined; (iii) which covariates are ultimately selected and what functional form (i.e. parameterization) they take; (iv) how the model is evaluated; and (v) how the model is interpreted. We outline some of the potential consequences of failing to acknowledge and respect these differences, and additionally consider the implications for machine learning (ML) methods. We then conclude with three recommendations that we hope will help ensure that both prediction and causal modelling are used appropriately and to greatest effect in health research.


Asunto(s)
Aprendizaje Automático , Causalidad , Humanos , Modelos Lineales , Pronóstico
8.
Front Vet Sci ; 8: 733812, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34660769

RESUMEN

Validity is not an inherent property of a measurement scale and so evidence for validity relating to its use for particular purposes, with defined populations and in specified contexts must be accumulated. We have published the development of a web-based, generic health-related quality of life instrument (VetMetrica™) to measure the affective impact of chronic disease in cats and provided evidence for its validity in a mixed population of cats, some of which, according to veterinary judgement, were healthy and others of which were suffering from chronic conditions likely to affect their quality of life, often with multiple co-morbidities present. The first aim of the current study was to demonstrate the construct validity of the VetMetrica™ generic instrument when used with cats suffering from osteoarthritis, by testing the hypothesis that the health-related quality of life profile of cats with different severities of osteoarthritis would differ and by demonstrating convergent validity between the health-related quality of life profile scores and independently quantified vet-assessed pain and quality of life impact scores. The latter involved simple correlation analysis and investigation of the relationship between health-related quality of life domain scores and vet-assessed scores, when adjusted for other potential explanatory variables including number of comorbidities and age. Responsiveness-the ability to detect clinically relevant change-is an essential quality for an evaluative instrument and it also provides evidence for "longitudinal validity". Therefore, a second aim of this study was to demonstrate that changes in health-related quality of life domain scores concurred with the clinician's impression of change over time in the health status of cats with osteoarthritis, thus providing evidence for the instrument's responsiveness. Previously, we have reported disagreement between owner and vet impression as to health status in cats in general, but not in relation to any specific disease. Accordingly, the third study aim was to investigate the extent of agreement or disagreement between owner impression of the impact of osteoarthritis on their cats' quality of life and vet impression of such impact. Fifty one percentage of cat owners believed their cats to be perfectly healthy despite a clinician diagnosis of osteoarthritis.

9.
Front Vet Sci ; 7: 601304, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33490133

RESUMEN

Using methodology previously described for the dog health-related quality of life (HRQL) tool (VetMetrica™), the aim was to optimize the scores profile of a comparable feline online HRQL instrument for monitoring HRQL in cats, to assist in its interpretation. Measuring HRQL helps quantify the impact of disease and its treatment on well-being, aids clinical decision making and provides information in clinical trials. In Study 1, using data collected from previous studies, scores generated for three domains of HRQL (Vitality, Comfort, Emotional Well-being) in healthy cats were normalized using standard statistical techniques of logit transformation and T-scores, such that the average healthy cat has a score of 50 in all three HRQL domains. Using normalized scores from healthy and sick cats, a threshold score of 44.8 was determined, above which 70% of healthy cats should score. Study 2 determined the Minimal Important Difference (MID) in normalized score that constituted a clinically significant improvement in each domain. Three methods were tested in order to determine the MID, with the final choice made based on statistical and clinical considerations. Thresholds of 5, 7.5, and 5 were chosen for the three HRQL domains representing Vitality, Comfort and Emotional Well-being, respectively. This study makes available a means of displaying HRQL scores from an online application in an easily interpretable manner and quantifies a clinically meaningful improvement in score. To illustrate the practical application of these developments, three case examples are presented. Example 1 illustrates the raw and normalized scores for a group of overweight cats enrolled in a Feline Weight Management Programme. Example 2 shows three groups of osteoarthritic cats, each with different severity of disease. The third is an elderly, un-well cat whose HRQL was recorded over time, specifically to facilitate end of life discussion between owner and veterinary clinician.

10.
Front Vet Sci ; 7: 575795, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33195573

RESUMEN

Preventive measures in human healthcare are recognized as a means of providing early detection of disease, however, the veterinary profession has not been as effective in communicating the benefits of preventive measures to pet owners. Readily available pet healthcare information on the internet, owners not understanding that regular health evaluations can ensure the well-being of their pets and owners confusing the signs of chronic disease with normal aging have contributed to declining numbers of veterinary visits. The use of web-based generic health-related quality of life (HRQL) measures to evaluate health status (wellness) remotely could facilitate veterinary preventive medicine. This publication describes the development and practical application of an integrated alert system for an online generic HRQL measurement instrument (VetMetrica™) which generates scores in four domains of HRQL-Energetic/Enthusiastic (E/E), Happy/Content (H/C), Active/Comfortable (A/C), and Calm/Relaxed (C/R)-for 2 age groups (young/middle-aged, ≤7 years and old, ≥8 years). The alert provides an early warning, via email to owners, that a potentially significant deterioration in health status has occurred. The model accurately predicted the health status of 93 and 83% of sick young/middle aged and old dogs respectively, with healthy dogs predicted with 83% accuracy. HRQL data, collected via a white-labeled veterinary clinic branded app designed to facilitate connected care between owner and veterinarian, were analyzed for 6,108 dogs, aged between 6 weeks and 16 years. Of these 5,002 were deemed to be in perfect health by their owners, yet the alert was triggered for 1,343 (27%) of these, 75% of which were young/middle-aged and 25% were old, indicating that acute injuries notwithstanding, many middle aged dogs may have been suffering from undetected chronic disease such as osteoarthritis. This work has demonstrated that the use of VetMetrica™ delivered via the PetDialog™ app, which supports 24/7 remote health monitoring is an efficient way for vets to provide all their owners with the opportunity to monitor their animal's wellness throughout their lifetime, providing the vet with a mechanism to identify health problems early while stimulating owners to be more proactive in seeking veterinary attention.

11.
J R Stat Soc Ser C Appl Stat ; 68(4): 859-885, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31598013

RESUMEN

Understanding how genetic changes allow emerging virus strains to escape the protection afforded by vaccination is vital for the maintenance of effective vaccines. We use structural and phylogenetic differences between pairs of virus strains to identify important antigenic sites on the surface of the influenza A(H1N1) virus through the prediction of haemagglutination inhibition (HI) titre: pairwise measures of the antigenic similarity of virus strains. We propose a sparse hierarchical Bayesian model that can deal with the pairwise structure and inherent experimental variability in the H1N1 data through the introduction of latent variables. The latent variables represent the underlying HI titre measurement of any given pair of virus strains and help to account for the fact that, for any HI titre measurement between the same pair of virus strains, the difference in the viral sequence remains the same. Through accurately representing the structure of the H1N1 data, the model can select virus sites which are antigenic, while its latent structure achieves the computational efficiency that is required to deal with large virus sequence data, as typically available for the influenza virus. In addition to the latent variable model, we also propose a new method, the block-integrated widely applicable information criterion biWAIC, for selecting between competing models. We show how this enables us to select the random effects effectively when used with the model proposed and we apply both methods to an A(H1N1) data set.

12.
PLoS One ; 14(9): e0221869, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31532799

RESUMEN

Measurement of health-related quality of life (HRQL) is becoming increasingly valuable within veterinary preventative health care and chronic disease management, as well as in outcomes research. Initial reliability and validation of a 22 item shortened version of VetMetrica (VM), structured questionnaire instrument to measure HRQL in dogs via a mobile application was reported previously. Meaningful interpretation and presentation of the 4 domain scores comprising the HRQL profile generated by VM is key to its successful use in clinical practice and research. Study one describes transformation of domain scores from 0-6 to 0-100 and normalisation of these based on the healthy canine population in two age ranges, such that a score of 50 on a 0-100 scale represents the score for the age-related average healthy dog, and establishment of a threshold to assess domain-specific health status for individual dogs. This provides the clinician with a simple method of ascertaining the health status of an individual dog relative to the average healthy population in the same age group (norm-based scoring). Study two determines the minimum important difference (MID) in domain scores which represents the smallest improvement in score that is meaningful to the dog owner, thus providing the clinician with a means of recognising what is likely to be a significant improvement in scores for an individual dog over time. Visual representation of these guidelines for the purpose of interpreting VM profile scores is presented using case studies.


Asunto(s)
Estado de Salud , Calidad de Vida , Animales , Enfermedades de los Perros/epidemiología , Perros , Femenino , Humanos , Masculino , Aplicaciones Móviles , Modelos Teóricos , Evaluación de Resultado en la Atención de Salud , Guías de Práctica Clínica como Asunto , Estudios Retrospectivos , Encuestas y Cuestionarios
13.
J R Stat Soc Ser C Appl Stat ; 68(5): 1555-1576, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31762497

RESUMEN

A central problem in biomechanical studies of personalized human left ventricular modelling is estimating the material properties and biophysical parameters from in vivo clinical measurements in a timeframe that is suitable for use within a clinic. Understanding these properties can provide insight into heart function or dysfunction and help to inform personalized medicine. However, finding a solution to the differential equations which mathematically describe the kinematics and dynamics of the myocardium through numerical integration can be computationally expensive. To circumvent this issue, we use the concept of emulation to infer the myocardial properties of a healthy volunteer in a viable clinical timeframe by using in vivo magnetic resonance image data. Emulation methods avoid computationally expensive simulations from the left ventricular model by replacing the biomechanical model, which is defined in terms of explicit partial differential equations, with a surrogate model inferred from simulations generated before the arrival of a patient, vastly improving computational efficiency at the clinic. We compare and contrast two emulation strategies: emulation of the computational model outputs and emulation of the loss between the observed patient data and the computational model outputs. These strategies are tested with two interpolation methods, as well as two loss functions. The best combination of methods is found by comparing the accuracy of parameter inference on simulated data for each combination. This combination, using the output emulation method, with local Gaussian process interpolation and the Euclidean loss function, provides accurate parameter inference in both simulated and clinical data, with a reduction in the computational cost of about three orders of magnitude compared with numerical integration of the differential equations by using finite element discretization techniques.

14.
Metabolites ; 9(10)2019 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-31600991

RESUMEN

Liquid chromatography (LC) coupled to tandem mass spectrometry (MS/MS) is widely used in identifying small molecules in untargeted metabolomics. Various strategies exist to acquire MS/MS fragmentation spectra; however, the development of new acquisition strategies is hampered by the lack of simulators that let researchers prototype, compare, and optimize strategies before validations on real machines. We introduce Virtual Metabolomics Mass Spectrometer (ViMMS), a metabolomics LC-MS/MS simulator framework that allows for scan-level control of the MS2 acquisition process in silico. ViMMS can generate new LC-MS/MS data based on empirical data or virtually re-run a previous LC-MS/MS analysis using pre-existing data to allow the testing of different fragmentation strategies. To demonstrate its utility, we show how ViMMS can be used to optimize N for Top-N data-dependent acquisition (DDA) acquisition, giving results comparable to modifying N on the mass spectrometer. We expect that ViMMS will save method development time by allowing for offline evaluation of novel fragmentation strategies and optimization of the fragmentation strategy for a particular experiment.

15.
J R Soc Interface ; 16(156): 20190114, 2019 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-31266415

RESUMEN

In recent years, we have witnessed substantial advances in the mathematical modelling of the biomechanical processes underlying the dynamics of the cardiac soft-tissue. Gao et al. (Gao et al. 2017 J. R. Soc. Interface 14, 20170203 ( doi:10.1098/rsif.2017.0203 )) demonstrated that the parameters underlying the biomechanical model have diagnostic value for prognosticating the risk of myocardial infarction. However, the computational costs of parameter estimation are prohibitive when the goal lies in building real-time clinical decision support systems. This is due to the need to repeatedly solve the mathematical equations numerically using finite-element discretization during an iterative optimization routine. The present article presents a method for accelerating the inference of the constitutive parameters by using statistical emulation with Gaussian processes. We demonstrate how the computational costs can be reduced by about three orders of magnitude, with hardly any loss in accuracy, and we assess various alternative techniques in a comparative evaluation study based on simulated data obtained by solving the left ventricular model with the finite-element method, and real magnetic resonance images data for a human volunteer.


Asunto(s)
Simulación por Computador , Ventrículos Cardíacos , Imagen por Resonancia Magnética , Modelos Cardiovasculares , Infarto del Miocardio , Ventrículos Cardíacos/diagnóstico por imagen , Ventrículos Cardíacos/fisiopatología , Humanos , Infarto del Miocardio/diagnóstico por imagen , Infarto del Miocardio/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA