Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Immunol ; 21(9): 983-997, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32690951

RESUMEN

Plasmacytoid dendritic cells (pDCs) are a major source of type I interferon (IFN-I). What other functions pDCs exert in vivo during viral infections is controversial, and more studies are needed to understand their orchestration. In the present study, we characterize in depth and link pDC activation states in animals infected by mouse cytomegalovirus by combining Ifnb1 reporter mice with flow cytometry, single-cell RNA sequencing, confocal microscopy and a cognate CD4 T cell activation assay. We show that IFN-I production and T cell activation were performed by the same pDC, but these occurred sequentially in time and in different micro-anatomical locations. In addition, we show that pDC commitment to IFN-I production was marked early on by their downregulation of leukemia inhibitory factor receptor and was promoted by cell-intrinsic tumor necrosis factor signaling. We propose a new model for how individual pDCs are endowed to exert different functions in vivo during a viral infection, in a manner tightly orchestrated in time and space.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Células Dendríticas/inmunología , Infecciones por Herpesviridae/inmunología , Muromegalovirus/fisiología , Animales , Células Cultivadas , Interferón Tipo I/metabolismo , Activación de Linfocitos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Confocal , Análisis de Secuencia de ARN , Transducción de Señal , Análisis de la Célula Individual , Factor de Necrosis Tumoral alfa/metabolismo
2.
J Biol Chem ; 295(46): 15767-15781, 2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-32917725

RESUMEN

Endocannabinoid signaling plays a regulatory role in various (neuro)biological functions. 2-arachidonoylglycerol (2-AG) is the most abundant endocannabinoid, and although its canonical biosynthetic pathway involving phosphoinositide-specific phospholipase C and diacylglycerol lipase α is known, alternative pathways remain unsettled. Here, we characterize a noncanonical pathway implicating glycerophosphodiesterase 3 (GDE3, from GDPD2 gene). Human GDE3 expressed in HEK293T cell membranes catalyzed the conversion of lysophosphatidylinositol (LPI) into monoacylglycerol and inositol-1-phosphate. The enzyme was equally active against 1-acyl and 2-acyl LPI. When using 2-acyl LPI, where arachidonic acid is the predominant fatty acid, LC-MS analysis identified 2-AG as the main product of LPI hydrolysis by GDE3. Furthermore, inositol-1-phosphate release into the medium occurred upon addition of LPI to intact cells, suggesting that GDE3 is actually an ecto-lysophospholipase C. In cells expressing G-protein-coupled receptor GPR55, GDE3 abolished 1-acyl LPI-induced signaling. In contrast, upon simultaneous ex-pression of GDE3 and cannabinoid receptor CB2, 2-acyl LPI evoked the same signal as that induced by 2-AG. These data strongly suggest that, in addition to degrading the GPR55 LPI ligand, GDE3 can act as a switch between GPR55 and CB2 signaling. Coincident with a major expression of both GDE3 and CB2 in the spleen, spleens from transgenic mice lacking GDE3 displayed doubling of LPI content compared with WT mice. Decreased production of 2-AG in whole spleen was also observed, supporting the in vivo relevance of our findings. These data thus open a new research avenue in the field of endocannabinoid generation and reinforce the view of GPR55 and LPI being genuine actors of the endocannabinoid system.


Asunto(s)
Hidrolasas Diéster Fosfóricas/metabolismo , Transducción de Señal , Secuencia de Aminoácidos , Animales , Ácidos Araquidónicos/análisis , Ácidos Araquidónicos/metabolismo , Ácidos Araquidónicos/farmacología , Endocannabinoides/análisis , Endocannabinoides/metabolismo , Endocannabinoides/farmacología , Femenino , Glicéridos/análisis , Glicéridos/metabolismo , Glicéridos/farmacología , Células HEK293 , Humanos , Hidrólisis , Fosfatos de Inositol/metabolismo , Lisofosfolípidos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Monoglicéridos/metabolismo , Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/deficiencia , Receptor Cannabinoide CB2/genética , Receptor Cannabinoide CB2/metabolismo , Receptores de Cannabinoides/metabolismo , Alineación de Secuencia , Transducción de Señal/efectos de los fármacos , Bazo/metabolismo
3.
Proc Natl Acad Sci U S A ; 115(11): E2556-E2565, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29463701

RESUMEN

Bone deficits are frequent in HIV-1-infected patients. We report here that osteoclasts, the cells specialized in bone resorption, are infected by HIV-1 in vivo in humanized mice and ex vivo in human joint biopsies. In vitro, infection of human osteoclasts occurs at different stages of osteoclastogenesis via cell-free viruses and, more efficiently, by transfer from infected T cells. HIV-1 infection markedly enhances adhesion and osteolytic activity of human osteoclasts by modifying the structure and function of the sealing zone, the osteoclast-specific bone degradation machinery. Indeed, the sealing zone is broader due to F-actin enrichment of its basal units (i.e., the podosomes). The viral protein Nef is involved in all HIV-1-induced effects partly through the activation of Src, a regulator of podosomes and of their assembly as a sealing zone. Supporting these results, Nef-transgenic mice exhibit an increased osteoclast density and bone defects, and osteoclasts derived from these animals display high osteolytic activity. Altogether, our study evidences osteoclasts as host cells for HIV-1 and their pathological contribution to bone disorders induced by this virus, in part via Nef.


Asunto(s)
Resorción Ósea/etiología , Infecciones por VIH/complicaciones , VIH-1/fisiología , Osteoclastos/virología , Actinas/metabolismo , Animales , Resorción Ósea/metabolismo , Resorción Ósea/patología , Resorción Ósea/fisiopatología , Huesos/metabolismo , Adhesión Celular , Femenino , Infecciones por VIH/metabolismo , Infecciones por VIH/patología , Infecciones por VIH/virología , VIH-1/genética , Humanos , Ratones , Osteoclastos/citología , Osteoclastos/metabolismo , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo
4.
Biomacromolecules ; 19(3): 712-720, 2018 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-29443507

RESUMEN

Dendrimers are nanosized, nonlinear, hyperbranched polymers whose overall 3D shape is key for their biological activity. Poly(PhosphorHydrazone) (PPH) dendrimers capped with aza-bisphosphonate (ABP) end groups are known to have anti-inflammatory properties enabling the control of inflammatory diseases in different mouse models. Here we screen the anti-inflammatory activity of a series of PPH dendrimers bearing between 2 and 16 ABP end groups in a mouse model of arthritis and confront the biological results with atomistic simulations of the dendrimers. We show that only the PPH dendrimers capped with 10 and 12 ABP end groups can control the flare of the inflammatory disease. All-atom accelerated molecular dynamics simulations show that dendrimers with a low number of ABP end groups are directional but highly flexible/dynamic and have thereby limited efficiency in establishing multivalent interactions. The largest dendrimer appears as nondirectional, having 16 ABP end groups forming patches all over the dendrimer surface. Conversely, intermediate dendrimers having 10 or 12 ABP end groups reach the best compromise between the number of surface groups and their stable directional gathering, a real maximization of multivalency.


Asunto(s)
Dendrímeros , Difosfonatos , Hidrazonas , Animales , Dendrímeros/química , Dendrímeros/farmacología , Difosfonatos/química , Difosfonatos/farmacología , Modelos Animales de Enfermedad , Hidrazonas/química , Hidrazonas/farmacología , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Estructura Molecular
5.
Rheumatology (Oxford) ; 52(4): 590-8, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23204551

RESUMEN

Biotherapies have revolutionized the treatment of RA. However, much work is needed to understand all the mechanisms of these biotherapies, and alternatives are needed to circumvent adverse effects and the high cost of these long-lasting treatments. In this article we outline some of the approaches we have used to target monocytes/macrophages as major components of inflammation and bone homeostasis. We also discuss how anti-TNF-α antibodies target monocytes/macrophages in the complex mechanisms contributing to inhibition of inflammation.


Asunto(s)
Artritis Reumatoide/terapia , Silenciador del Gen/efectos de los fármacos , Fosfolipasas A2 Grupo IV/genética , Macrófagos/enzimología , Terapia Molecular Dirigida/métodos , Monocitos/enzimología , ARN Interferente Pequeño/uso terapéutico , Animales , Artritis Reumatoide/inmunología , Dendrímeros , Humanos , Factor de Necrosis Tumoral alfa/inmunología
6.
Molecules ; 18(8): 9305-16, 2013 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-23921793

RESUMEN

Over the last decade, different types of dendrimers have shown anti-inflammatory properties in their own right. In particular, we have shown that poly(phosphorhydrazone) (PPH) dendrimers are able to foster an efficient anti-inflammatory response in human monocytes and can resolve the main physiopathological features of chronic arthritis in mice at 1 mg/kg. Here we afford new insights into the therapeutic potential of an azabisphosphonate-capped dendrimer (dendrimer ABP). We have challenged its anti-inflammatory and immuno-modulatory properties in a robust rat model of acute uveitis induced by lipopolysaccharide (LPS). We show that dendrimer ABP at 2 µg/eye is as efficient as the "gold standard" dexamethasone at 20 µg/eye. We have demonstrated that the effect of dendrimer ABP is mediated at least through an increase of the production of the anti-inflammatory Interleukin(IL)-10 cytokine.


Asunto(s)
Dendrímeros/farmacología , Organofosfonatos/farmacología , Uveítis/tratamiento farmacológico , Animales , Antiinflamatorios/farmacología , Dendrímeros/química , Dexametasona/farmacología , Humanos , Hidrazonas/química , Hidrazonas/farmacología , Lipopolisacáridos/toxicidad , Ratones , Monocitos/efectos de los fármacos , Organofosfonatos/química , Ratas , Uveítis/inducido químicamente , Uveítis/metabolismo
7.
J Cell Biol ; 222(5)2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36988579

RESUMEN

Macrophages are essential for HIV-1 pathogenesis and represent major viral reservoirs. Therefore, it is critical to understand macrophage infection, especially in tissue macrophages, which are widely infected in vivo, but poorly permissive to cell-free infection. Although cell-to-cell transmission of HIV-1 is a determinant mode of macrophage infection in vivo, how HIV-1 transfers toward macrophages remains elusive. Here, we demonstrate that fusion of infected CD4+ T lymphocytes with human macrophages leads to their efficient and productive infection. Importantly, several tissue macrophage populations undergo this heterotypic cell fusion, including synovial, placental, lung alveolar, and tonsil macrophages. We also find that this mode of infection is modulated by the macrophage polarization state. This fusion process engages a specific short-lived adhesion structure and is controlled by the CD81 tetraspanin, which activates RhoA/ROCK-dependent actomyosin contractility in macrophages. Our study provides important insights into the mechanisms underlying infection of tissue-resident macrophages, and establishment of persistent cellular reservoirs in patients.


Asunto(s)
Linfocitos T CD4-Positivos , Fusión Celular , Infecciones por VIH , Macrófagos , Humanos , Linfocitos T CD4-Positivos/metabolismo , Infecciones por VIH/metabolismo , VIH-1/patogenicidad , Macrófagos/metabolismo , Macrófagos/virología , Actomiosina/metabolismo
8.
Arthritis Res Ther ; 23(1): 16, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33413603

RESUMEN

Human cytomegalovirus (HCMV) is a ß-herpesvirus that causes inflammation and remains for life in a latent state in their host. HCMV has been at the center of many hypotheses regarding RA.We have recently shown that HCMV infection impairs bone erosion through the induction of the mRNA-binding protein QKI5. Latently infected RA patients display a slower progression of bone erosion in patients from a national cohort. Our observations question the possible association between HCMV and the pathophysiology of RA. In this review, we examine the possibility that HCMV may be an aggravating factor of inflammation in RA while protecting from bone erosion. We also assess its relationship with other pathogens such as bacteria causing periodontitis and responsible for ACPA production.This review thus considers whether HCMV can be regarded as a friend or a foe in the pathogenesis and the course of RA.


Asunto(s)
Artritis Reumatoide , Infecciones por Citomegalovirus , Estudios de Cohortes , Citomegalovirus , Humanos , Inflamación
9.
iScience ; 24(4): 102331, 2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33889824

RESUMEN

In order to ascertain the significance of transmembrane tumor necrosis factor (tmTNF) reverse signaling in vivo, we generated a triple transgenic mouse model (3TG, TNFR1-/-, TNFR2-/-, and tmTNFKI/KI) in which all canonical tumor necrosis factor (TNF) signaling was abolished. In bone-marrow-derived macrophages harvested from these mice, various anti-TNF biologics induced the expression of genes characteristic of alternative macrophages and also inhibited the expression of pro-inflammatory cytokines mainly through the upregulation of arginase-1. Injections of TNF inhibitors during arthritis increased pro-resolutive markers in bone marrow precursors and joint cells leading to a decrease in arthritis score. These results demonstrate that the binding of anti-TNF biologics to tmTNF results in decreased arthritis severity. Collectively, our data provide evidence for the significance of tmTNF reverse signaling in the modulation of arthritis. They suggest a complementary interpretation of anti-TNF biologics effects in the treatment of inflammatory diseases and pave the way to studies focused on new arginase-1-dependent therapeutic targets.

10.
J Immunol ; 181(8): 5530-6, 2008 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-18832710

RESUMEN

Human CMV (HCMV) is a ubiquitous beta-herpesvirus which has developed several mechanisms of escape from the immune system. IFN-gamma-induced signaling relies on the integrity of the JAK/STAT pathway which is regulated by phosphorylation steps and leads to nuclear translocation of tyrosine-phosphorylated STAT1 (STAT1-P-Tyr), and its binding to IFN-gamma activation site sequences of IFN-gamma-inducible promoters. Activation of those promoters leads to the expression of genes involved in the immune response and in the antiviral effects of IFN-gamma. Src homology region 2 domain-containing phosphatase 2 (SHP2) is a ubiquitous phosphatase involved in the regulation of IFN-gamma-mediated tyrosine phosphorylation. Several mechanisms account for the inhibition IFN-gamma signaling pathway by HCMV. In this study, we have identified a new mechanism that involved the inhibition of STAT1 tyrosine phosphorylation within 12-24 h postinfection. This defect was dependent on HCMV transcription. Consequences were impaired nuclear translocation of STAT1-P-Tyr, inhibition of IFN-gamma activation site-STAT1 interaction, and inhibition of HLA-DR expression. Expression of indoleamine-2,3-dioxygenase which is involved in the antiviral effects of IFN-gamma was also inhibited. Treatment of cells with sodium orthovanadate rescued STAT1 tyrosine phosphorylation, suggesting that a tyrosine phosphatase was involved in this inhibition. Coimmunoprecipitation of STAT1 and SHP2 was induced by HCMV infection, and SHP2 small interfering RNA restored the expression of STAT1-P-Tyr. Our data suggest that SHP2 activation induced by HCMV infection is responsible for the down-regulation of IFN-gamma-induced STAT1 tyrosine phosphorylation.


Asunto(s)
Núcleo Celular/inmunología , Infecciones por Citomegalovirus/inmunología , Citomegalovirus/inmunología , Interferón gamma/inmunología , Proteína Tirosina Fosfatasa no Receptora Tipo 11/inmunología , Factor de Transcripción STAT1/inmunología , Transducción de Señal/inmunología , Transporte Activo de Núcleo Celular/inmunología , Línea Celular , Núcleo Celular/metabolismo , Infecciones por Citomegalovirus/enzimología , Regulación hacia Abajo/inmunología , Activación Enzimática/inmunología , Antígenos HLA-DR/inmunología , Antígenos HLA-DR/metabolismo , Humanos , Interferón gamma/metabolismo , Quinasas Janus/inmunología , Quinasas Janus/metabolismo , Fosforilación , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Factor de Transcripción STAT1/metabolismo , Factores de Tiempo , Tirosina/inmunología , Tirosina/metabolismo
11.
J Bone Miner Res ; 35(4): 753-765, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31834954

RESUMEN

Increased osteoclastogenesis is a common feature of bone erosion, notably in osteoporosis but also in inflammatory diseases such as rheumatoid arthritis (RA) and osteoarticular infections. Human cytomegalovirus (HCMV) infection has been described to impair monocyte differentiation into macrophages and dendritic cells. However, its effect on monocyte-derived osteoclasts is yet to be determined. We showed here that in vitro HCMV infection is associated with an inhibition of osteoclastogenesis through decreased expression of colony stimulating factor 1 receptor (CSF-1R) and RANK in monocytes, which was mediated by an upregulation of quaking I-5 protein (QKI-5), a cellular RNA-interacting protein. We found that deliberate QKI5 overexpression in the absence of HCMV infection is able to decrease CSF-1R and RANK expression, leading to osteoclastogenesis inhibition. Finally, by using lentiviral vectors in a calvarial bone erosion mouse model, we showed that QKI5 inhibits bone degradation. This work identifies QKI5 as a strong inhibitor of bone resorption. Future research will point out whether QKI5 could be a target for bone pathologies. © 2019 American Society for Bone and Mineral Research.


Asunto(s)
Resorción Ósea , Osteogénesis , Diferenciación Celular , Humanos , Factor Estimulante de Colonias de Macrófagos , Macrófagos , Osteoclastos , Ligando RANK , Proteínas de Unión al ARN
12.
Front Immunol ; 10: 3, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30713533

RESUMEN

Macrophages contribute to the pathogenesis of rheumatoid arthritis (RA). They can display different states of activation or "polarization," notably the so-called inflammatory "M1" and the various alternative "M2" polarizations, characterized by distinct functions. Data regarding the effects of RA anti-cytokine biological disease-modifying anti-rheumatic drugs (bDMARDs) on macrophage polarization are scarce. We aimed to assess in vitro modulation of macrophage polarization by bDMARDs targeting pro-inflammatory cytokines in RA. We generated monocyte derived macrophages using blood samples from 20 RA patients with active RA and 30 healthy controls. We evaluated in vitro the impact on M1 inflammatory macrophages of: etanercept (ETA), adalimumab (ADA), certolizumab (CZP), tocilizumab (TCZ), and rituximab (RTX). We assessed the impact on macrophage polarization using flow cytometry and RTqPCR to study the expression of surface markers and perform functional studies of cytokine production, phagocytosis, and negative feedback control of inflammation. Among evaluated bDMARDs, anti-TNF agents modulated the polarization of inflammatory macrophages by decreasing inflammatory surface markers (CD40, CD80) and favoring alternative markers (CD16, CD163, MerTK). Anti-TNF agents also induced alternative functions in macrophages activated in inflammatory condition with (i) the inhibition of inflammatory cytokines (TNF, IL-6, IL-12), (ii) an increase in phagocytosis. These findings were mechanistically related to an increase in early IL-10 production, responsible for higher negative feedback control of inflammation involving SOCS3 and Gas6. This IL-10 effect was STAT3-dependent. Anti-TNF agents not only inhibit in vitro inflammatory functions of macrophages, but also favor resolution of inflammation through polarization toward alternative features specifically involving the IL-10/STAT3 axis.


Asunto(s)
Interleucina-10/metabolismo , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Factor de Transcripción STAT3/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Anciano , Artritis Reumatoide/diagnóstico , Artritis Reumatoide/inmunología , Artritis Reumatoide/metabolismo , Artritis Reumatoide/terapia , Biomarcadores , Células Cultivadas , Citocinas/metabolismo , Femenino , Perfilación de la Expresión Génica , Humanos , Inmunofenotipificación , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Macrófagos/efectos de los fármacos , Masculino , Persona de Mediana Edad , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores
14.
Front Immunol ; 10: 1482, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31316519

RESUMEN

Introduction: Adipose-derived mesenchymal stem cells (ADSC) have been shown to have remarkable immune-modulating effects. However, their efficacy in clinical trials has yet to be fully demonstrated. This could be due to a lack of a proper inflammatory environment in vivo that primes ADSC. Here, we define how the articular microenvironment of rheumatoid arthritis (RA) patients modulates the therapeutic efficiency of ADSC. Methods: Synovial fluids (SF) were collected from 8 RA patients, 2 Spondyloarthritis patients and one control synovial fluid from a patient undergoing traumatic-related surgery. SF inflammatory status was determined by routine analysis and quantification of pro-inflammatory cytokines. ADSC were first treated with SF and ADSC proliferation and gene expression of immunomodulatory factors was evaluated. In order to determine the mechanisms underlying the effect of SF on ADSC, tumor necrosis factor (TNF), interleukin-6 (IL-6), and NF-κB neutralization assays were performed. To evaluate the effect of SF on ADSC functions, ADSC were pre-treated with SF and then co-cultured with either macrophages or T cells. The modulation of their phenotype was assessed by flow cytometry. Results: Pro-inflammatory RASF maintained the proliferative capacity of ADSC and upregulated the gene expression of cyclooxygenase-2 (COX2), indoleamine-1,2-dioxygenase (IDO), interleukin-6 (IL-6), tumor-necrosis factor stimulated gene 6 (TSG6), intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and programmed death-ligand 1 (PD-L1), all factors involved in ADSC immunomodulatory potential. The RASF-induced gene expression was mainly mediated by TNF alone or in combination with IL-6 and signaled through the NF-κB pathway. Conditioning ADSC with pro-inflammatory RASF enhanced their ability to induce CD4+Foxp3+CD25high regulatory T cells (Tregs) and inhibit pro-inflammatory markers CD40 and CD80 in activated macrophages. Conclusions: Inflammatory synovial fluids from RA patients had the capacity to modulate ADSC response, to induce Tregs and modulate the phenotype of macrophages. The clinical use of ADSC in affected joints should take into account the influence of the local articular environment on their potential. Having a sufficient pro-inflammatory microenvironment will determine whether optimal immunoregulatory response should be expected. Direct ADSC intra-articular delivery to patients could be a potential strategy to properly prime their immunomodulatory potential and enhance their clinical benefits.


Asunto(s)
Tejido Adiposo/citología , Artritis Reumatoide/inmunología , Inmunomodulación , Células Madre Mesenquimatosas/inmunología , FN-kappa B/inmunología , Líquido Sinovial/inmunología , Factor de Necrosis Tumoral alfa/inmunología , Tejido Adiposo/inmunología , Adulto , Anciano , Preescolar , Humanos , Lactante , Recién Nacido , Macrófagos/inmunología , Persona de Mediana Edad
15.
Arthritis Rheumatol ; 71(11): 1801-1811, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31162832

RESUMEN

OBJECTIVE: The severity of rheumatoid arthritis (RA) correlates directly with bone erosions arising from osteoclast (OC) hyperactivity. Despite the fact that inflammation may be controlled in patients with RA, those in a state of sustained clinical remission or low disease activity may continue to accrue erosions, which supports the need for treatments that would be suitable for long-lasting inhibition of OC activity without altering the physiologic function of OCs in bone remodeling. Autotaxin (ATX) contributes to inflammation, but its role in bone erosion is unknown. METHODS: ATX was targeted by inhibitory treatment with pharmacologic drugs and also by conditional inactivation of the ATX gene Ennp2 in murine OCs (ΔATXC tsk ). Arthritic and erosive diseases were studied in human tumor necrosis factor-transgenic (hTNF+/- ) mice and mice with K/BxN serum transfer-induced arthritis. Systemic bone loss was also analyzed in mice with lipopolysaccharide (LPS)-induced inflammation and estrogen deprivation. Joint inflammation and bone erosion were assessed by histology and micro-computed tomography. The role of ATX in RA was also examined in OC differentiation and activity assays. RESULTS: OCs present at sites of inflammation overexpressed ATX. Pharmacologic inhibition of ATX in hTNF+/- mice, as compared to vehicle-treated controls, significantly mitigated focal bone erosion (36% decrease; P < 0.05) and systemic bone loss (43% decrease; P < 0.05), without affecting synovial inflammation. OC-derived ATX was revealed to be instrumental in OC bone resorptive activity and was up-regulated by the inflammation elicited in the presence of TNF or LPS. Specific loss of ATX in OCs from mice subjected to ovariectomy significantly protected against the systemic bone loss and erosion that had been induced with LPS and K/BxN serum treatments (30% reversal of systemic bone loss [P < 0.01]; 55% reversal of erosion [P < 0.001]), without conferring bone-protective properties. CONCLUSION: Our results identify ATX as a novel OC factor that specifically controls inflammation-induced bone erosions and systemic bone loss. Therefore, ATX inhibition offers a novel therapeutic approach for potentially preventing bone erosion in patients with RA.


Asunto(s)
Artritis Experimental/metabolismo , Artritis Reumatoide/metabolismo , Resorción Ósea/metabolismo , Osteoclastos/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Animales , Artritis Experimental/inmunología , Artritis Experimental/patología , Artritis Reumatoide/inmunología , Artritis Reumatoide/patología , Resorción Ósea/diagnóstico por imagen , Resorción Ósea/inmunología , Calcáneo/diagnóstico por imagen , Femenino , Fémur/diagnóstico por imagen , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Ratones , Ratones Transgénicos , Ovariectomía , Astrágalo/diagnóstico por imagen , Factor de Necrosis Tumoral alfa/genética , Microtomografía por Rayos X
16.
Arthritis Res Ther ; 20(1): 229, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30314507

RESUMEN

Tumor necrosis factor (TNF) is a pleiotropic cytokine involved in many aspects of immune regulation. Anti-TNF biological therapy has been considered a breakthrough in the treatment of chronic autoimmune diseases, such as rheumatoid arthritis (RA). In this review, because of the major involvement of T cells in RA pathogenesis, we discuss the effects of anti-TNF biotherapy on T-cell responses in RA patients. We also outline the potential fields for future research in the area of anti-TNF therapy in RA.This could be useful to better understand the therapeutic efficiency and the side effects that are encountered in RA patients. Better targeting of T cells in RA could help set more specific anti-TNF strategies and develop prediction tools for response.


Asunto(s)
Antirreumáticos/uso terapéutico , Artritis Reumatoide/metabolismo , Productos Biológicos/uso terapéutico , Linfocitos T/fisiología , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Antirreumáticos/farmacología , Artritis Reumatoide/tratamiento farmacológico , Productos Biológicos/farmacología , Terapia Biológica/métodos , Terapia Biológica/tendencias , Humanos , Linfocitos T/efectos de los fármacos , Resultado del Tratamiento
17.
Fundam Clin Pharmacol ; 21(3): 281-9, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17521297

RESUMEN

Z-ajoene is a garlic-derived compound with known anti-tumour properties. This report argues in favour of pro-apoptotic and cell cycle blockage activities of Z-ajoene on various cell lines involving activation of the p53-family gene products, p53, p63 and p73, at indicated doses. According to its known anti-proteasome activity, Z-ajoene induced a downregulation of MHC-class I expression at the surface of treated cells but did not impair their recognition by CD8+ T cells. We further demonstrated a new activity of Z-ajoene against human cytomegalovirus spreading in vitro that was mediated by an increased number of apoptotic cells after infection. Altogether our data point at the ubiquitous efficiency of Z-ajoene as a new compound to fight against cancers of various origins including those that put up viruses.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Citomegalovirus/efectos de los fármacos , Disulfuros/farmacología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Citomegalovirus/fisiología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/virología , Genes MHC Clase I/fisiología , Antígeno HLA-A2/metabolismo , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , ARN Mensajero/metabolismo , Sulfóxidos , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción , Proteína Tumoral p73 , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
18.
Arthritis Res Ther ; 18: 56, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26932562

RESUMEN

BACKGROUND: Anti TNF drugs have been widely used in rheumatoid arthritis (RA) but only 70 to 80 % of patients respond to this therapy. Exploring the mode of action of anti-TNF drugs remains important in order to improve the efficiency of the treatment and enhance our knowledge of inflammation. TNF-α exists as classical soluble cytokine as well as transmembrane protein (tmTNF-α). Evidence suggests that tmTNF-α can induce reverse signaling. In the present study, we have explored consequences of reverse signaling in human monocytes using certolizumab pegol (CZP). METHODS: Monocytes were purified from healthy blood donors and were incubated with CZP. Nuclear translocation of Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) was evaluated by wide-field microscopy and cell fractionation. Heme oxygenase 1 (HO-1) was assessed by RT-qPCR and western blot. Monocytes were stimulated with lipopolysaccharide (LPS). IL-1ß was quantitated by RT-qPCR. Reactive oxygen species (ROS) were evaluated by flow cytometry using the H2DCFDA fluorescent marker. RESULTS: CZP induced rapid minimal ROS production and Nrf2 nuclear translocation. This was followed by HO-1 mRNA and protein production. IL-1ß induction by LPS was inhibited at the mRNA and protein level. At a later time-point, CZP was able to counteract the strong production of ROS induced by LPS. Reverse signaling was suggested by short kinetics of Nrf2 translocation, extensive washing of CZP and the use of anti-TNF-Rs antibodies. CONCLUSION: Our data suggest a novel mechanism of ROS modulation by CZP. This observation sheds new light on the function of reverse signaling and on potential mechanisms of action of anti-TNF drugs.


Asunto(s)
Antirreumáticos/farmacología , Certolizumab Pegol/farmacología , Monocitos/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Antioxidantes/farmacología , Western Blotting , Células Cultivadas , Citometría de Flujo , Humanos , Microscopía Fluorescente , Monocitos/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Transporte de Proteínas/efectos de los fármacos , Reacción en Cadena en Tiempo Real de la Polimerasa , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores
19.
Viral Immunol ; 18(2): 391-6, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16035951

RESUMEN

Human cytomegalovirus (HCMV) is a beta-herpes virus that persists in a latent state in immunocompetent individuals. Both CD4(+) and CD8(+) T lymphocytes have been reported to be present at a high frequency in HCMV-seropositive individuals and are involved in the control of infection. How such frequencies are maintained is not completely understood. We have observed that the canonical HLA-DR8 epitope of the immediate early 1 protein (IE1) contained in the IE1 (156--175) sequence shares homologies with an IE1 sequence contained in part in the previously reported HLA-DR3 epitope, IE1 (91-110). We thus wondered whether such homology in a single protein would translate into recognition of the IE1 homolog sequence by HLA-DR8-restricted CD4(+) cells in addition to the canonical epitope. We found that established HLA-DR8-restricted T cell clones are also able to cross-recognize the IE1 (91--110) peptide, as well as a shorter 14-mer, IE1 (91--104). Moreover, the homolog peptide IE1 (91-110) was able to generate, from a seropositive blood donor, new IE1-specific, HLA-DR8-restricted CD4(+) T cell clones that were also cross-reactive. Those findings may provide clues to the formation and regulation of the T-cell repertoire and memory.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Citomegalovirus/inmunología , Proteínas Inmediatas-Precoces/inmunología , Péptidos/inmunología , Proteínas Virales/inmunología , Secuencia de Aminoácidos , Células Clonales/inmunología , Reacciones Cruzadas , Citomegalovirus/metabolismo , Antígenos HLA-DR/metabolismo , Subtipos Serológicos HLA-DR , Humanos , Proteínas Inmediatas-Precoces/química , Activación de Linfocitos , Datos de Secuencia Molecular , Péptidos/síntesis química , Péptidos/química , Receptores de Interleucina-2 , Proteínas Virales/química
20.
Invest Ophthalmol Vis Sci ; 44(2): 665-71, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12556397

RESUMEN

PURPOSE: Host defense against infection by human cytomegalovirus (HCMV) is ensured in great part by cytotoxic CD8(+) T lymphocytes (CTLs) directed against the tegument protein pp65. The hyperimmediate release of incoming pp65 into the major histocompatibility complex (MHC) class I pathway after fusion of the virus with the cell membrane provides a very early mechanism of defense. In retinal pigment epithelial (RPE) cells HCMV is known to enter through endocytosis. This study was conducted to determine whether this means of penetration into the cells would allow the virus to elude immune surveillance. METHODS: Infection of RPE cells with HCMV AD169 was performed for 6 hours, 48 hours, and 8 days. Expression of intracellular pp65 in RPE cells and in the astrocytoma reference cell line U373MG was evaluated by flow cytometry, fluorescence microscopy, and Western blot analysis. Killing of both HCMV-infected cell lines by HLA-A2-restricted CD8(+) CTLs directed against pp65 was monitored by (51)Cr-release assays. RESULTS: RPE cells were not lysed by CTLs directed against incoming pp65, contrary to U373MG. Moreover, both cell lines were not killed by anti-pp65 CTLs later after infection, because of the MHC class-I-downregulating effect of HCMV unique short (US2-11) proteins. CONCLUSIONS: In RPE cells, both HCMV entry through endocytosis and the immunosuppressive effect of US proteins could allow the virus to evade immune surveillance at any stage of infection, which could promote viral spreading within the retina.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Citomegalovirus/fisiología , Citotoxicidad Inmunológica/fisiología , Fosfoproteínas/inmunología , Epitelio Pigmentado Ocular/virología , Linfocitos T Citotóxicos/fisiología , Proteínas de la Matriz Viral/inmunología , Western Blotting , Línea Celular , Citometría de Flujo , Técnica del Anticuerpo Fluorescente Indirecta , Humanos , Microscopía Fluorescente , Epitelio Pigmentado Ocular/metabolismo , Pruebas de Precipitina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA