Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros

Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Pharmacol ; 96(1): 13-25, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31043460

RESUMEN

Pancreatic cancer is one of the most lethal types of tumors with no effective therapy available; is currently the third leading cause of cancer in developed countries; and is predicted to become the second deadliest cancer in the United States by 2030. Due to the marginal benefits of current standard chemotherapy, the identification of new therapeutic targets is greatly required. Considering that cAMP pathway is commonly activated in pancreatic ductal adenocarcinoma (PDAC) and its premalignant lesions, we aim to investigate the multidrug resistance-associated protein 4 (MRP4)-dependent cAMP extrusion process as a cause of increased cell proliferation in human PDAC cell lines. Our results from in silico analysis indicate that MRP4 expression may influence PDAC patient outcome; thus, high MRP4 levels could be indicators of poor survival. In addition, we performed in vitro experiments and identified an association between higher MRP4 expression levels and more undifferentiated and malignant models of PDAC and cAMP extrusion capacity. We studied the antiproliferative effect and the overall cAMP response of three MRP4 inhibitors, probenecid, MK571, and ceefourin-1 in PDAC in vitro models. Moreover, MRP4-specific silencing in PANC-1 cells reduced cell proliferation (P < 0.05), whereas MRP4 overexpression in BxPC-3 cells significantly incremented their growth rate in culture (P < 0.05). MRP4 pharmacological inhibition or silencing abrogated cell proliferation through the activation of the cAMP/Epac/Rap1 signaling pathway. Also, extracellular cAMP reverted the antiproliferative effect of MRP4 blockade. Our data highlight the MRP4-dependent cAMP extrusion process as a key participant in cell proliferation, indicating that MRP4 could be an exploitable therapeutic target for PDAC. SIGNIFICANCE STATEMENT: ABCC4/MRP4 is the main transporter responsible for cAMP efflux. In this work, we show that MRP4 expression may influence PDAC patient outcome and identify an association between higher MRP4 expression levels and more undifferentiated and malignant in vitro models of PDAC. Findings prove the involvement of MRP4 in PDAC cell proliferation through a novel extracellular cAMP mitogenic pathway and further support MRP4 inhibition as a promising therapeutic strategy for PDAC treatment.


Asunto(s)
Carcinoma Ductal Pancreático/metabolismo , AMP Cíclico/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Neoplasias Pancreáticas/metabolismo , Benzotiazoles/farmacología , Carcinoma Ductal Pancreático/genética , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Simulación por Computador , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Silenciador del Gen , Células HEK293 , Humanos , Neoplasias Pancreáticas/genética , Probenecid/farmacología , Pronóstico , Propionatos/farmacología , Quinolinas/farmacología , Transducción de Señal/efectos de los fármacos , Análisis de Supervivencia , Triazoles/farmacología , Regulación hacia Arriba
2.
Arch Toxicol ; 93(8): 2279-2294, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31300867

RESUMEN

Taurolithocholate (TLC) is a cholestatic bile salt that induces disinsertion of the canalicular transporter Abcc2 (Mrp2, multidrug resistance-associated protein 2). This internalization is mediated by different intracellular signaling proteins such as PI3K, PKCε and MARCK but the initial receptor of TLC remains unknown. A few G protein-coupled receptors interact with bile salts in hepatocytes. Among them, sphingosine-1 phosphate receptor 2 (S1PR2) represents a potential initial receptor for TLC. The aim of this study was to evaluate the role of this receptor and its downstream effectors in the impairment of Abcc2 function induced by TLC. In vitro, S1PR2 inhibition by JTE-013 or its knockdown by small interfering RNA partially prevented the decrease in Abcc2 activity induced by TLC. Moreover, adenylyl cyclase (AC)/PKA and PI3K/Akt inhibition partially prevented TLC effect on canalicular transporter function. TLC produced PKA and Akt activation, which were blocked by JTE-013 and AC inhibitors, connecting S1PR2/AC/PKA and PI3K/Akt in a same pathway. In isolated perfused rat liver, injection of TLC triggered endocytosis of Abcc2 that was accompanied by a sustained decrease in the bile flow and the biliary excretion of the Abcc2 substrate dinitrophenyl-glutathione until the end of the perfusion period. S1PR2 or AC inhibition did not prevent the initial decay, but they accelerated the recovery of these parameters and the reinsertion of Abcc2 into the canalicular membrane. In conclusion, S1PR2 and the subsequent activation of AC, PKA, PI3K and Akt is partially responsible for the cholestatic effects of TLC through sustained internalization of Abcc2.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Adenilil Ciclasas/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Ácido Taurolitocólico/farmacología , Animales , Células Cultivadas , Femenino , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Redes y Vías Metabólicas/efectos de los fármacos , Técnicas de Cultivo de Órganos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Pirazoles/farmacología , Piridinas/farmacología , Ratas Wistar , Receptores de Esfingosina-1-Fosfato/antagonistas & inhibidores , Receptores de Esfingosina-1-Fosfato/genética , Ácido Taurolitocólico/metabolismo
3.
Biochem J ; 474(23): 4001-4017, 2017 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-29054977

RESUMEN

Despite its importance in the regulation of growth and differentiation processes of a variety of organisms, the mechanism of synthesis and degradation of cAMP (cyclic AMP) has not yet been described in Giardia lamblia In this work, we measured significant quantities of cAMP in trophozoites of G. lamblia incubated in vitro and later detected how it increases during the first hours of encystation, and how it then returns to basal levels at 24 h. Through an analysis of the genome of G. lamblia, we found sequences of three putative enzymes - one phosphodiesterase (gPDE) and two nucleotidyl cyclases (gNC1 and gNC2) - that should be responsible for the regulation of cAMP in G. lamblia Later, an RT-PCR assay confirmed that these three genes are expressed in trophozoites. The bioinformatic analysis indicated that gPDE is a transmembrane protein of 154 kDa, with a single catalytic domain in the C-terminal end; gNC1 is predicted to be a transmembrane protein of 74 kDa, with only one class III cyclase homology domain (CHD) at the C-terminal end; and gNC2 should be a transmembrane protein of 246 kDa, with two class III CHDs. Finally, we cloned and enriched the catalytic domain of gNC1 (gNC1cd) from bacteria. After that, we confirmed that gNC1cd has adenylyl cyclase (AC) activity. This enzymatic activity depends on the presence of Mn2+ and Ca2+, but no significant activity was displayed in the presence of Mg2+ Additionally, the AC activity of gNC1cd is competitively inhibited with GTP, so it is highly possible that gNC1 has guanylyl cyclase activity as well.


Asunto(s)
Adenilil Ciclasas/química , AMP Cíclico/química , Giardia lamblia/enzimología , Guanilato Ciclasa/química , Hidrolasas Diéster Fosfóricas/química , Proteínas Protozoarias/química , Adenilil Ciclasas/genética , Adenilil Ciclasas/metabolismo , Secuencia de Aminoácidos , Calcio/química , Calcio/metabolismo , Dominio Catalítico , Clonación Molecular , Cristalografía por Rayos X , AMP Cíclico/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Giardia lamblia/genética , Giardia lamblia/crecimiento & desarrollo , Guanilato Ciclasa/genética , Guanilato Ciclasa/metabolismo , Cinética , Manganeso/química , Manganeso/metabolismo , Modelos Moleculares , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Plásmidos/química , Plásmidos/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología Estructural de Proteína , Especificidad por Sustrato , Trofozoítos/enzimología , Trofozoítos/genética , Trofozoítos/crecimiento & desarrollo
4.
J Mammary Gland Biol Neoplasia ; 22(1): 43-57, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28074314

RESUMEN

Understanding the mechanisms that govern normal mammary gland development is crucial to the comprehension of breast cancer etiology. ß-adrenergic receptors (ß-AR) are targets of endogenous catecholamines such as epinephrine that have gained importance in the context of cancer biology. Differences in ß2-AR expression levels may be responsible for the effects of epinephrine on tumor vs non-tumorigenic breast cell lines, the latter expressing higher levels of ß2-AR. To study regulation of the breast cell phenotype by ß2-AR, we over-expressed ß2-AR in MCF-7 breast cancer cells and knocked-down the receptor in non-tumorigenic MCF-10A breast cells. In MCF-10A cells having knocked-down ß2-AR, epinephrine increased cell proliferation and migration, similar to the response by tumor cells. In contrast, in MCF-7 cells overexpressing the ß2-AR, epinephrine decreased cell proliferation and migration and increased adhesion, mimicking the response of the non-tumorigenic MCF-10A cells, thus underscoring that ß2-AR expression level is a key player in cell behavior. ß-adrenergic stimulation with isoproterenol induced differentiation of breast cells growing in 3-dimension cell culture, and also the branching of murine mammary epithelium in vivo. Branching induced by isoproterenol was abolished in fulvestrant or tamoxifen-treated mice, demonstrating that the effect of ß-adrenergic stimulation on branching is dependent on the estrogen receptor (ER). An ER-independent effect of isoproterenol on lumen architecture was nonetheless found. Isoproterenol significantly increased the expression of ERα, Ephrine-B1 and fibroblast growth factors in the mammary glands of mice, and in MCF-10A cells. In a poorly differentiated murine ductal carcinoma, isoproterenol also decreased tumor growth and induced tumor differentiation. This study highlights that catecholamines, through ß-AR activation, seem to be involved in mammary gland development, inducing mature duct formation. Additionally, this differentiating effect could be resourceful in a breast tumor context.


Asunto(s)
Neoplasias de la Mama/metabolismo , Morfogénesis/fisiología , Receptores Adrenérgicos beta 2/metabolismo , Animales , Neoplasias de la Mama/tratamiento farmacológico , Catecolaminas/metabolismo , Adhesión Celular/efectos de los fármacos , Adhesión Celular/fisiología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/fisiología , Proliferación Celular/efectos de los fármacos , Proliferación Celular/fisiología , Estradiol/análogos & derivados , Estradiol/farmacología , Estrógenos/metabolismo , Femenino , Fulvestrant , Humanos , Isoproterenol/farmacología , Células MCF-7 , Glándulas Mamarias Animales/efectos de los fármacos , Glándulas Mamarias Animales/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Morfogénesis/efectos de los fármacos , Receptores de Estrógenos/metabolismo , Tamoxifeno/farmacología
5.
Biochim Biophys Acta ; 1860(9): 1998-2007, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27316323

RESUMEN

BACKGROUND: Histamine, through histamine H2 receptor (H2R), modulates different biological processes, involving the modulation of PI3K/AKT/mTOR and RAS/RAF/MEK/ERK pathways. Many evidences have demonstrated the existence and importance of the crossregulation between these two signaling pathways. The aim of the present work was to determine the molecular mechanisms leading to PI3K and ERK pathways modulation induced by the H2R agonist amthamine and to evaluate the possible interplay between them. METHODS: Phosphorylation levels of ERK and Akt were examined by Western blot in HEK293T cells expressing the human H2R, in the presence of H2R agonist and dominant negative mutants or pharmacological inhibitors of different proteins/pathways. Transcriptional activity assays were assessed to determine SRE activity. Amthamine-mediated cellular proliferation was investigated in MA-10A cells in the presence of PI3K inhibitor. RESULTS: H2R agonist inhibits PI3K/Akt/mTOR and stimulates Ras/MEK/ERK pathways. Moreover, PI3K/Akt/mTOR signaling inhibition is necessary to achieve H2R mediated ERK activation. In the presence of a constitutive active mutant of Akt, amthamine is not able to mediate ERK activation. This crosstalk affects classical ERK downstream targets such as Elk1 phosphorylation and the transcriptional activity of the SRE, classically associated to proliferation. We further demonstrate that amthamine-induced proliferation in Leydig MA-10 tumor cells, is enhanced by LY294002, a PI3K inhibitor. CONCLUSIONS: These results describe a crosstalk between PI3K/AKT/mTOR and Ras/MEK/ERK pathways induced by H2R stimulation with implications in cell proliferation. GENERAL SIGNIFICANCE: This work indicates that the modulation of PI3K/AKT/mTOR pathway by H2R in turn regulates Ras/MEK/ERK activation conditioning the proliferative capacity of the cells.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Agonistas de los Receptores Histamínicos/farmacología , Histamina/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Células HEK293 , Humanos , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Tiazoles/farmacología
6.
Mol Hum Reprod ; 23(7): 500-508, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28460003

RESUMEN

STUDY QUESTION: What is the role of the endocannabinoid system (eCS) on the lipopolysaccharide (LPS) effects on uterine explants from 7-day pregnant mice in a murine model of endotoxin-induced miscarriage? SUMMARY ANSWER: We found evidence for cannabinoid receptor type2 (CB2) involvement in LPS-induced increased prostaglandin-F2α (PGF2α) synthesis and diminished cyclic adenosine monophosphate (cAMP) intracellular content in uterine explants from early pregnant mice. WHAT IS KNOWN ALREADY: Genital tract infections by Gram-negative bacteria are a common complication of human pregnancy that results in an increased risk of pregnancy loss. LPS, the main component of the Gram-negative bacterial wall, elicits a strong maternal inflammatory response that results in embryotoxicity and embryo resorption in a murine model endotoxin-induced early pregnancy loss. We have previously shown that the eCS mediates the embryotoxic effects of LPS, mainly via CB1 receptor activation. STUDY DESIGN, SIZE, DURATION: An in vitro study of mice uterine explants was performed to investigate the eCS in mediating the effects of LPS on PGF2α production and cAMP intracellular content. PARTICIPANTS/MATERIALS, SETTING, METHODS: Eight to 12-week-old virgin female BALB/c or CD1 (wild-type [WT] or CB1-knockout [CB1-KO]) mice were paired with 8- to 12-week-old BALB/c or CD1 (WT or CB1-KO) males, respectively. On day 7 of pregnancy, BALB/c, CD1 WT or CD1 CB1-KO mice were euthanized, the uteri were excised, implantation sites were removed and the uterine tissues were separated from decidual and embryo tissues. Uterine explants were cultured and exposed for an appropriate amount of time to different pharmacological treatments. The tissues were then collected for cAMP assay and PGF2α content determination by radioimmunoassay. MAIN RESULTS AND THE ROLE OF CHANCE: In vitro treatment of uteri explants from 7-day pregnant BALB/c or CD1 (WT or CB1-KO) mice with LPS induced an increased production of PGF2α (P < 0.05) and a reduction of the tissue content of cAMP (P < 0.05). These effects were mediated by CB2 receptors since exposure to AM630 (a specific CB2 receptor antagonist) prevented these LPS-induced effects (P < 0.05). Collectively, our results suggest a role for the eCS mediating LPS-induced deleterious effects on reproductive tissues. LIMITATIONS, REASONS FOR CAUTION: Since our experimental design involves in vitro experiments of uterine explants, the extrapolation of the results presented here to humans is limited. WIDER IMPLICATIONS OF THE FINDINGS: Our findings provide evidence for the role of CB2 receptors in reproductive events as well as their participation as a mediator of LPS deleterious effects on reproductive tissues. LARGE SCALE DATA: None. STUDY FUNDING AND COMPETING INTEREST(S): Dr Ana María Franchi was funded by Agencia Nacional para la Promoción Científica y Tecnológica (PICT 2010/0813 and PICT 2013/0097) and by Consejo Nacional de Investigaciones Científicas y Técnicas (PIP 2012/0061). Dr Carlos Davio was funded by Agencia Nacional para la Promoción Científica y Tecnológica (PICT 2013/2050). The authors have no competing interests.


Asunto(s)
Aborto Espontáneo/metabolismo , AMP Cíclico/metabolismo , Lipopolisacáridos/farmacología , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB2/genética , Útero/efectos de los fármacos , Aborto Espontáneo/inducido químicamente , Aborto Espontáneo/genética , Aborto Espontáneo/patología , Animales , Agonistas de Receptores de Cannabinoides/farmacología , AMP Cíclico/antagonistas & inhibidores , Dinoprost/biosíntesis , Modelos Animales de Enfermedad , Femenino , Eliminación de Gen , Expresión Génica , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Técnicas de Cultivo de Órganos , Embarazo , Receptor Cannabinoide CB1/deficiencia , Receptor Cannabinoide CB2/metabolismo , Útero/metabolismo , Útero/patología
7.
Mol Hum Reprod ; 23(8): 521-534, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28521061

RESUMEN

STUDY QUESTION: Is extracellular cAMP involved in the regulation of signalling pathways in bovine sperm capacitation? SUMMARY ANSWER: Extracellular cAMP induces sperm capacitation through the activation of different signalling pathways that involve phospholipase C (PLC), PKC/ERK1-2 signalling and an increase in sperm Ca2+ levels, as well as soluble AC and cAMP/protein kinase A (PKA) signalling. WHAT IS KNOWN ALREADY: In order to fertilize the oocyte, ejaculated spermatozoa must undergo a series of changes in the female reproductive tract, known as capacitation. This correlates with a number of membrane and metabolic modifications that include an increased influx of bicarbonate and Ca2+, activation of a soluble adenylyl cyclase (sAC) to produce cAMP, PKA activation, protein tyrosine phosphorylation and the development of hyperactivated motility. We previously reported that cAMP efflux by Multidrug Resistance Protein 4 (MRP4) occurs during sperm capacitation and the pharmacological blockade of this inhibits the process. Moreover, the supplementation of incubation media with cAMP abolishes the inhibition and leads to sperm capacitation, suggesting that extracellular cAMP regulates crucial signalling cascades involved in this process. STUDY DESIGN, SIZE, DURATION: Bovine sperm were selected by the wool glass column method, and washed by centrifugation in BSA-Free Tyrode's Albumin Lactate Pyruvate (sp-TALP). Pellets were resuspended then diluted for each treatment. For in vitro capacitation, 10 to 15 × 106 SPZ/ml were incubated in 0.3% BSA sp-TALP at 38.5°C for 45 min under different experimental conditions. To evaluate the role of extracellular cAMP on different events associated with sperm capacitation, 10 nM cAMP was added to the incubation medium as well as different inhibitors of enzymes associated with signalling transduction pathways: U73122 (PLC inhibitor, 10 µM), Gö6983 (PKC inhibitor, 10 µM), PD98059 (ERK-1/2 inhibitor, 30 µM), H89 and KT (PKA inhibitors, 50 µM and 100 nM, respectively), KH7 (sAC inhibitor, 10 µM), BAPTA-AM (intracellular Ca2+ chelator, 50 µM), EGTA (10 µM) and Probenecid (MRPs general inhibitor, 500 µM). In addition, assays for binding to oviductal epithelial cells and IVF were carried out to test the effect of cAMP compared with other known capacitant agents such as heparin (60 µg/ml) and bicarbonate (40 mM). PARTICIPANTS/MATERIALS, SETTING, METHODS: Straws of frozen bovine semen (20-25 × 106 spermatozoa/ml) were kindly provided by Las Lilas, CIALE and CIAVT Artificial Insemination Centers. The methods used in this work include western blot, immunohistochemistry, flow cytometry, computer-assisted semen analysis, live imaging of Ca2+ and fluorescence scanning. At least three independent assays with bull samples of proven fertility were carried. MAIN RESULTS AND THE ROLE OF CHANCE: In the present study, we elucidate the molecular events induced by extracellular cAMP. Our results showed that external cAMP induces sperm capacitation, depending upon the action of PLC. Downstream, this enzyme increased ERK1-2 activation through PKC and elicited a rise in sperm Ca2+ levels (P < 0.01). Moreover, extracellular cAMP-induced capacitation also depended on the activity of sAC and PKA, and increased tyrosine phosphorylation, indicating that the nucleotide exerts a broad range of responses. In addition, extracellular cAMP-induced sperm hyperactivation and concomitantly increased the proportion of spermatozoa with high mitochondrial activity (P < 0.01). Finally, cAMP increased the in vitro fertilization rate compared to control conditions (P < 0.001). LARGE SCALE DATA: None. LIMITATIONS, REASONS FOR CAUTION: This is an in vitro study performed with bovine cryopreserved spermatozoa. Studies in other species and with fresh samples are needed to extrapolate these data. WIDER IMPLICATIONS OF THE FINDINGS: These findings strongly suggest an important role of extracellular cAMP in the regulation of the signalling pathways involved in the acquisition of bull sperm fertilizing capability. The data presented here indicate that not only a rise, but also a regulation of cAMP levels is necessary to ensure sperm fertilizing ability. Thus, exclusion of the nucleotide to the extracellular space might be essential to guarantee the achievement of a cAMP tone, needed for all capacitation-associated events to take place. Moreover, the ability of cAMP to trigger such broad and complex signalling events allows us to hypothesize that cAMP is a self-produced autocrine/paracrine factor, and supports the emerging paradigm that spermatozoa do not compete but, in fact, communicate with each other. A precise understanding of the functional competence of mammalian spermatozoa is essential to generate clinical advances in the treatment of infertility and the development of novel contraceptive strategies. STUDY FUNDING AND COMPETING INTEREST(S): This work was supported by Consejo Nacional de Investigaciones Científicas y Técnicas [PIP0 496 to S.P.-M.], Agencia Nacional de Promoción Científica y Tecológica [PICT 2012-1195 and PICT2014-2325 to S.P.-M., and PICT 2013-2050 to C.D.], Boehringer Ingelheim Funds, and the Swedish Farmers Foundation [SLF-H13300339 to J.M.]. The authors declare there are no conflicts of interests.


Asunto(s)
AMP Cíclico/metabolismo , Transducción de Señal , Capacitación Espermática , Animales , Calcio/metabolismo , Bovinos , Células Cultivadas , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Inhibidores Enzimáticos/farmacología , Fertilidad , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Transducción de Señal/efectos de los fármacos , Capacitación Espermática/efectos de los fármacos , Fosfolipasas de Tipo C/antagonistas & inhibidores , Fosfolipasas de Tipo C/metabolismo
8.
Reprod Fertil Dev ; 29(11): 2112-2126, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28376314

RESUMEN

Lysophosphatidic acid (LPA) affects several female reproductive functions through G-protein-coupled receptors. LPA contributes to embryo implantation via the lysophospholipid LPA3 receptor. In the present study we investigated the participation of endogenous LPA signalling through the LPA3 receptor in vascularisation and decidualisation, two crucial events at the maternal-fetal interface. Pregnant rats were treated with diacylglycerol pyrophosphate (DGPP), a highly selective antagonist of LPA3 receptors, on Day 5 of gestation. Pregnant rats received intrauterine (i.u.) injections of single doses of DGPP (0.1mgkg-1) in a total volume of 2µL in the left horn (treated horn) in the morning of GD5. DGPP treatment produced aberrant embryo spacing and increased embryo resorption. The LPA3 receptor antagonist decreased the cross-sectional length of the uterine and arcuate arteries and induced histological anomalies in the decidua and placentas. Marked haemorrhagic processes, infiltration of immune cells and tissue disorganisation were observed in decidual and placental tissues from sites of resorption. The mRNA expression of three vascularisation markers, namely interleukin 10 (Il10), vascular endothelial growth factor (Vegfa) and vascular endothelial growth factor receptor 1 (Vegfr1), was reduced at sites of resorption from Day 8. The results show that the disruption of endogenous LPA signalling by blocking the LPA3 receptor modified the development of uterine vessels with consequences in the formation of the decidua and placenta and in the growth of embryos.


Asunto(s)
Decidua/metabolismo , Lisofosfolípidos/metabolismo , Neovascularización Fisiológica/fisiología , Placenta/metabolismo , Receptores del Ácido Lisofosfatídico/metabolismo , Transducción de Señal/fisiología , Animales , Decidua/efectos de los fármacos , Difosfatos/farmacología , Implantación del Embrión/fisiología , Femenino , Glicerol/análogos & derivados , Glicerol/farmacología , Interleucina-10/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , Placenta/irrigación sanguínea , Placenta/efectos de los fármacos , Embarazo , Ratas , Receptores del Ácido Lisofosfatídico/agonistas , Transducción de Señal/efectos de los fármacos , Arteria Uterina/efectos de los fármacos , Arteria Uterina/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo
9.
Handb Exp Pharmacol ; 241: 141-160, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27316911

RESUMEN

Acute myeloid leukemia (AML) consists in a cancer of early hematopoietic cells arising in the bone marrow, most often of those cells that would turn into white blood cells (except lymphocytes). Chemotherapy is the treatment of choice for AML but one of the major complications is that current drugs are highly toxic and poorly tolerated. In general, treatment for AML consists of induction chemotherapy and post-remission therapy. If no further post-remission is given, almost all patients will eventually relapse. Histamine, acting at histamine type-2 (H2) receptors on phagocytes and AML blast cells, helps prevent the production and release of oxygen-free radicals, thereby protecting NK and cytotoxic T cells. This protection allows immune-stimulating agents, such as interleukin-2 (IL-2), to activate cytotoxic cells more effectively, enhancing the killing of tumor cells. Based on this mechanism, post-remission therapy with histamine and IL-2 was found to significantly prevent relapse of AML. Alternatively, another potentially less toxic approach to treat AML employs drugs to induce differentiation of malignant cells. It is based on the assumption that many neoplastic cell types exhibit reversible defects in differentiation, which upon appropriate treatment results in tumor reprogramming and the induction of terminal differentiation. There are promissory results showing that an elevated and sustained signaling through H2 receptors is able to differentiate leukemia-derived cell lines, opening the door for the use of H2 agonists for specific differentiation therapies. In both situations, histamine acting through H2 receptors constitutes an eligible treatment to induce leukemic cell differentiation, improving combined therapies.


Asunto(s)
Células Sanguíneas/metabolismo , Leucemia Mieloide Aguda/metabolismo , Receptores Histamínicos H2/sangre , Receptores Histamínicos H2/metabolismo , Histamina/metabolismo , Humanos , Interleucina-2/metabolismo , Leucemia Mieloide Aguda/sangre , Masculino
10.
Apoptosis ; 21(9): 965-76, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27364950

RESUMEN

Miscarriage caused by Gram-negative bacteria infecting the female genital tract is one of the most common complications of human pregnancy. Intraperitoneal administration of LPS to 7-days pregnant mice induces embryo resorption after 24 h. Here, we show that LPS induced apoptosis on uterine explants from 7-days pregnant mice and that CB1 receptor was involved in this effect. On the other hand, heparin has been widely used for the prevention of pregnancy loss in women with frequent miscarriage with or without thrombophilia. Besides its anticoagulant properties, heparin exerts anti-inflammatory, immunomodulatory and anti-apoptotic effects. Here, we sought to investigate whether the administration of heparin prevented LPS-induced apoptosis in uterine explants from 7-days pregnant mice. We found that heparin enhanced cell survival in LPS-treated uterine explants and that this effect was mediated by increasing uterine FAAH activity. Taken together, our results point towards a novel mechanism involved in the protective effects of heparin.


Asunto(s)
Aborto Espontáneo/metabolismo , Aborto Espontáneo/fisiopatología , Apoptosis/efectos de los fármacos , Endocannabinoides/metabolismo , Heparina/farmacología , Útero/metabolismo , Aborto Espontáneo/genética , Animales , Supervivencia Celular/efectos de los fármacos , Implantación del Embrión , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Embarazo , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/metabolismo
11.
Mol Med ; 21: 58-67, 2015 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-25569802

RESUMEN

We previously reported that atrial natriuretic factor (ANF) stimulates secretin-evoked cAMP efflux through multidrug resistance-associated protein 4 (MRP4) in the exocrine pancreas. Here we sought to establish in vivo whether this mechanism was involved in acute pancreatitis onset in the rat. Rats pretreated with or without probenecid (MRPs general inhibitor) were infused with secretin alone or with ANF. A set of these animals were given repetitive cerulein injections to induce acute pancreatitis. Plasma amylase and intrapancreatic trypsin activities were measured and histological examination of the pancreas performed. Secretin alone activated trypsinogen but induced no pancreatic histological changes. Blockade by probenecid in secretin-treated rats increased trypsin and also induced vacuolization, a hallmark of acute pancreatitis. ANF prevented the secretin response but in the absence of probenecid. In rats with acute pancreatitis, pretreatment with secretin aggravated the disease, but ANF prevented secretin-induced changes. Blockade of MRPs in rats with acute pancreatitis induced trypsinogen activation and larger cytoplasmic vacuoles as well as larger areas of necrosis and edema that were aggravated by secretin but not prevented by ANF. The temporal resolution of intracellular cAMP levels seems critical in the onset of acute pancreatitis, since secretin-evoked cAMP in a context of MRP inhibition makes the pancreas prone to injury in normal rats and aggravates the onset of acute pancreatitis. Present findings support a protective role for ANF mediated by cAMP extrusion through MRP4 and further suggest that the regulation of MRP4 by ANF would be relevant to maintain pancreatic acinar cell homeostasis.


Asunto(s)
Factor Natriurético Atrial/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/antagonistas & inhibidores , Pancreatitis/metabolismo , Células Acinares/metabolismo , Enfermedad Aguda , Animales , Membrana Celular/metabolismo , AMP Cíclico/metabolismo , Espacio Intracelular/metabolismo , Modelos Biológicos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Transporte de Proteínas , Ratas , Tripsinógeno/metabolismo
12.
Hepatology ; 59(3): 1016-29, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24115158

RESUMEN

UNLABELLED: Estradiol-17ß-D-glucuronide (E17G) activates different signaling pathways (e.g., Ca(2+) -dependent protein kinase C, phosphoinositide 3-kinase/protein kinase B, mitogen-activated protein kinases [MAPKs] p38 and extracellular signal-related kinase 1/2, and estrogen receptor alpha) that lead to acute cholestasis in rat liver with retrieval of the canalicular transporters, bile salt export pump (Abcb11) and multidrug resistance-associated protein 2 (Abcc2). E17G shares with nonconjugated estradiol the capacity to activate these pathways. G-protein-coupled receptor 30 (GPR30) is a receptor implicated in nongenomic effects of estradiol, and the aim of this study was to analyze the potential role of this receptor and its downstream effectors in E17G-induced cholestasis. In vitro, GPR30 inhibition by G15 or its knockdown with small interfering RNA strongly prevented E17G-induced impairment of canalicular transporter function and localization. E17G increased cyclic adenosine monophosphate (cAMP) levels, and this increase was blocked by G15, linking GPR30 to adenylyl cyclase (AC). Moreover, AC inhibition totally prevented E17G insult. E17G also increased protein kinase A (PKA) activity, which was blocked by G15 and AC inhibitors, connecting the links of the pathway, GPR30-AC-PKA. PKA inhibition prevented E17G-induced cholestasis, whereas exchange protein activated directly by cyclic nucleotide/MAPK kinase, another cAMP downstream effector, was not implicated in cAMP cholestatic action. In the perfused rat liver model, inhibition of the GPR30-AC-PKA pathway totally prevented E17G-induced alteration in Abcb11 and Abcc2 function and localization. CONCLUSION: Activation of GPR30-AC-PKA is a key factor in the alteration of canalicular transporter function and localization induced by E17G. Interaction of E17G with GPR30 may be the first event in the cascade of signaling activation.


Asunto(s)
Adenilil Ciclasas/metabolismo , Colestasis/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Estradiol/análogos & derivados , Receptores Acoplados a Proteínas G/metabolismo , Miembro 11 de la Subfamilia B de Transportador de Casetes de Unión al ATP , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Canalículos Biliares/metabolismo , Células Cultivadas , Colestasis/inducido químicamente , Estradiol/toxicidad , Técnicas de Silenciamiento del Gen , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Hepatocitos/enzimología , Ratas , Receptores Acoplados a Proteínas G/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
13.
Biochem J ; 459(1): 117-26, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24417223

RESUMEN

7TMRs (seven-transmembrane receptors) exist as conformational collections in which different conformations would lead to differential downstream behaviours such as receptor phosphorylation, G-protein activation and receptor internalization. In this context, a ligand may cause differential activation of some, but not all, of the signalling events, which are associated to a particular receptor, and it would lead to biased agonism. The aim of the present study was to investigate whether H2R (histamine H2 receptor) ligands, described as inverse agonists because of their negative efficacy at modulating adenylate cyclase, could display some positive efficacy concerning receptor desensitization, internalization or even signalling through an adenylate-cyclase-independent pathway. Our present findings indicate that treatment with H2R inverse agonists leads to receptor internalization in HEK (human embryonic kidney)-293T transfected cells, by a mechanism mediated by arrestin and dynamin, but independent of GRK2 (G-protein-coupled receptor kinase 2)-mediated phosphorylation. On the other hand, we prove that two of the H2R inverse agonists tested, ranitidine and tiotidine, also induce receptor desensitization. Finally, we show that these ligands are able to display positive efficacy towards the ERK1/2 (extracellular-signal-regulated kinase 1/2) pathway by a mechanism that involves Gßγ and PI3K (phosphoinositide 3-kinase)-mediated signalling in both transfected HEK-293T cells and human gastric adenocarcinoma cells. These results point to the aspect of pluridimensional efficacy at H2R as a phenomenon that could be extended to naïve cells, and challenge previous classification of pharmacologically relevant histaminergic ligands.


Asunto(s)
Agonismo Inverso de Drogas , Antagonistas de los Receptores H2 de la Histamina/metabolismo , Receptores Histamínicos H2/metabolismo , Transducción de Señal/fisiología , Línea Celular Tumoral , Células HEK293 , Antagonistas de los Receptores H2 de la Histamina/farmacología , Humanos , Ligandos , Ranitidina/metabolismo , Ranitidina/farmacología , Transducción de Señal/efectos de los fármacos
14.
Mol Hum Reprod ; 20(1): 89-99, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23907162

RESUMEN

Sperm capacitation has been largely associated with an increase in cAMP, although its relevance in the underlying mechanisms of this maturation process remains elusive. Increasing evidence shows that the extrusion of cAMP through multidrug resistance associated protein 4 (MRP4) regulates cell homeostasis not only in physiological but also in pathophysiological situations and studies from our laboratory strongly support this assumption. In the present work we sought to establish the role of cAMP efflux in the regulation of sperm capacitation. Sperm capacitation was performed in vitro by exposing bovine spermatozoa to bicarbonate 40 and 70 mM; cAMP; probenecid (a MRPs general inhibitor) and an adenosine type 1 receptor (A1 adenosine receptor) selective antagonist (DPCPX). Capacitation was assessed by chlortetracycline assay and lysophosphatidylcholine-induced acrosome reaction assessed by PSA-FITC staining. Intracellular and extracellular cAMP was measured by radiobinding the regulatory subunit of PKA under the same experimental conditions. MRP4 was detected by western blot and immunohistochemistry assays. Results showed that the inhibition of soluble adenylyl cyclase significantly inhibited bicarbonate-induced sperm capacitation. Furthermore, in the presence of 40 and 70 mM bicarbonate bovine spermatozoa synthesized and extruded cAMP. Interestingly, in the absence of IBMX (a PDEs inhibitor) cAMP efflux still operated in sperm cells, suggesting that cAMP extrusion would be a physiological process in the spermatozoa complementary to the action of PDE. Blockade of MRPs by probenecid abolished the efflux of the cyclic nucleotide resulting not only in the accumulation of intracellular cAMP but also in the inhibition of bicarbonate-induced sperm capacitation. The effect of probenecid was abolished by exposing sperm cells to cAMP. The high-affinity efflux pump for cAMP, MRP4 was expressed in bovine spermatozoa and localized to the midpiece of the tail as previously reported for soluble adenylyl cyclase and A1 adenosine receptor. Additionally, blockade of A1 adenosine receptor abolished not only bicarbonate-induced sperm capacitation but also that stimulated by cAMP. Present findings strongly support that cAMP efflux, presumably through MRP4, and the activation of A1 adenosine receptor regulate some events associated with bicarbonate-induced sperm capacitation, and further suggest a paracrine and/or autocrine role for cAMP.


Asunto(s)
AMP Cíclico/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Receptor de Adenosina A1/metabolismo , Capacitación Espermática/efectos de los fármacos , Espermatozoides/metabolismo , 1-Metil-3-Isobutilxantina/farmacología , Adenosina/química , Antagonistas del Receptor de Adenosina A1/farmacología , Inhibidores de Adenilato Ciclasa , Animales , Bicarbonatos/farmacología , Transporte Biológico , Bovinos , Humanos , Masculino , Inhibidores de Fosfodiesterasa/farmacología , Probenecid/farmacología , Motilidad Espermática , Xantinas/farmacología
15.
J Immunol ; 189(10): 4777-86, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23066152

RESUMEN

Seminal plasma is not just a carrier for spermatozoa. It contains high concentrations of cytokines, chemokines, and other biological compounds that are able to exert potent effects on the immune system of the receptive partner. Previous studies have shown that semen induces an acute inflammatory response at the female genital mucosa after coitus. Moreover, it induces regulatory mechanisms that allow the fetus (a semiallograft) to grow and develop in the uterus. The mechanisms underlying these regulatory mechanisms, however, are poorly understood. In this study, we show that seminal plasma redirects the differentiation of human dendritic cells (DCs) toward a regulatory profile. DCs differentiated from human monocytes in the presence of high dilutions of seminal plasma did not express CD1a but showed high levels of CD14. They were unable to develop a fully mature phenotype in response to LPS, TNF-α, CD40L, Pam2CSK4 (TLR2/6 agonist), or Pam3CSK4 (TLR1/2 agonist). Upon activation, they produced low amounts of the inflammatory cytokines IL-12p70, IL-1ß, TNF-α, and IL-6, but expressed a high ability to produce IL-10 and TGF-ß. Inhibition of the PG receptors E-prostanoid receptors 2 and 4 prevented the tolerogenic effect induced by seminal plasma on the phenotype and function of DCs, suggesting that E-series PGs play a major role. By promoting a tolerogenic profile in DCs, seminal plasma might favor fertility, but might also compromise the capacity of the receptive partner to mount an effective immune response against sexually transmitted pathogens.


Asunto(s)
Diferenciación Celular/fisiología , Células Dendríticas/inmunología , Tolerancia Inmunológica/fisiología , Monocitos/inmunología , Semen/inmunología , Adulto , Antígenos CD1/inmunología , Diferenciación Celular/efectos de los fármacos , Citocinas/inmunología , Células Dendríticas/citología , Femenino , Humanos , Tolerancia Inmunológica/efectos de los fármacos , Receptores de Lipopolisacáridos/inmunología , Lipopolisacáridos/farmacología , Masculino , Monocitos/citología , Subtipo EP2 de Receptores de Prostaglandina E/antagonistas & inhibidores , Subtipo EP2 de Receptores de Prostaglandina E/inmunología , Subtipo EP4 de Receptores de Prostaglandina E/antagonistas & inhibidores , Subtipo EP4 de Receptores de Prostaglandina E/inmunología
16.
Plants (Basel) ; 13(5)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38475493

RESUMEN

Giardiasis is a parasitosis caused by Giardia lamblia with significant epidemiological and clinical importance due to its high prevalence and pathogenicity. The lack of optimal therapies for treating this parasite makes the development of new effective chemical entities an urgent need. In the search for new inhibitors of the adenylyl cyclase gNC1 obtained from G. lamblia, 14 extracts from Argentinian native plants were screened. Lepechinia floribunda and L. meyenii extracts exhibited the highest gNC1 inhibitory activity, with IC50 values of 9 and 31 µg/mL, respectively. In silico studies showed rosmarinic acid, a hydroxycinnamic acid present in both mentioned species, to be a promising anti-gNC1 compound. This result was confirmed experimentally, with rosmarinic acid showing an IC50 value of 10.1 µM. Theoretical and experimental findings elucidate the molecular-level mechanism of rosmarinic acid, pinpointing the key interactions stabilizing the compound-enzyme complex and the binding site. These results strongly support that rosmarinic acid is a promising scaffold for developing novel compounds with inhibitory activity against gNC1, which could serve as potential therapeutic agents to treat giardiasis.

17.
Andrology ; 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38804843

RESUMEN

BACKGROUND: Factors contributing to the limited success of in vitro fertilization in horses remain to be studied. In this work, we elucidated the effect of different essential capacitation media components, bicarbonate, and bovine serum albumin or polyvinyl-alcohol, and the incubation microenvironment on sperm parameters associated with capacitation, acrosome reaction, and their ability to activate oocytes via heterologous intracytoplasmic spermatozoa injection in equine cryopreserved spermatozoa. METHODS: Frozen-thawed spermatozoa underwent incubation at different time intervals in either Tyrode's albumin lactate pyruvate medium (non-capacitating; NC) or Tyrode's albumin lactate pyruvate supplemented with bicarbonate, bicarbonate and polyvinyl-alcohol, bicarbonate and bovine serum albumin, polyvinyl-alcohol and bovine serum albumin alone. Protein kinase A-phosphorylated substrates and tyrosine phosphorylation levels, sperm motility, and acrosome reaction percentages were evaluated. After determining the best condition media (capacitating; CAP), heterologous intracytoplasmic spermatozoa injection on pig oocytes was performed and the phospholipase C zeta sperm localization pattern was evaluated. RESULTS: Incubation of frozen-thawed equine spermatozoa with bicarbonate and polyvinyl-alcohol in atmospheric air for 45 min induced an increase in protein kinase A-phosphorylated substrates and tyrosine phosphorylation levels compared to NC condition. Sperm incubation in bicarbonate and polyvinyl-alcohol medium showed an increase in total motility and progressive motility with respect to NC (p ≤ 0.05). Interestingly, three parameters associated with sperm hyperactivation were modulated under bicarbonate and polyvinyl-alcohol conditions. The kinematic parameters curvilinear velocity and amplitude of lateral head displacement significantly increased, while straightness significantly diminished (curvilinear velocity: bicarbonate and polyvinyl-alcohol = 120.9 ± 2.9 vs. NC = 76.91 ± 6.9 µm/s) (amplitude of lateral head displacement: bicarbonate and polyvinyl-alcohol = 1.15 ± 0.02 vs. NC = 0.77 ± 0.03 µm) (straightness: bicarbonate and polyvinyl-alcohol = 0.76 ± 0.01 vs. NC = 0.87 ± 0.02) (p ≤ 0.05). Moreover, the spontaneous acrosome reaction significantly increased in spermatozoa incubated in this condition. Finally, bicarbonate and polyvinyl-alcohol medium was established as CAP medium. Although no differences were found in phospholipase C zeta localization pattern in spermatozoa incubated under CAP, equine spermatozoa pre-incubated in CAP condition for 45 min showed higher fertilization rates when injected into matured pig oocytes (NC: 47.6% vs. CAP 76.5%; p ≤ 0.05). CONCLUSION: These findings underscore the importance of bicarbonate and polyvinyl-alcohol in supporting critical events associated with in vitro sperm capacitation in the horse, resulting in higher oocyte activation percentages following heterologous intracytoplasmic spermatozoa injection. This protocol could have an impact on reproductive efficiency in the equine breeding industry.

18.
Am J Physiol Cell Physiol ; 304(10): C1013-26, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23485713

RESUMEN

Hypotonicity triggered in human hepatoma cells (Huh-7) the release of ATP and cell swelling, followed by volume regulatory decrease (RVD). We analyzed how the interaction between those processes modulates cell volume. Cells exposed to hypotonic medium swelled 1.5 times their basal volume. Swelling was followed by 41% RVD(40) (extent of RVD after 40 min of maximum), whereas the concentration of extracellular ATP (ATP(e)) increased 10 times to a maximum value at 15 min. Exogenous apyrase (which removes di- and trinucleotides) did not alter RVD, whereas exogenous Na(+)-K(+)-ATPase (which converts ATP to ADP in the extracellular medium) enhanced RVD(40) by 2.6 times, suggesting that hypotonic treatment alone produced a basal RVD, whereas extracellular ADP activated RVD to achieve complete volume regulation (i.e., RVD(40) ≈100%). Under hypotonicity, addition of 2-(methylthio)adenosine 5'-diphosphate (2MetSADP; ADP analog) increased RVD to the same extent as exposure to Na(+)-K(+)-ATPase and the same analog did not stimulate RVD when coincubated with MRS2211, a blocker of ADP receptor P2Y(13). RT-PCR and Western blot analysis confirmed the presence of P2Y(13). Cells exhibited significant ectoATPase activity, which according to RT-PCR analysis can be assigned to ENTPDase2. Both carbenoxolone, a blocker of conductive ATP release, and brefeldin A, an inhibitor of exocytosis, were able to partially decrease ATP(e) accumulation, pointing to the presence of at least two mechanisms for ATP release. Thus, in Huh-7 cells, hypotonic treatment triggered the release of ATP. Conversion of ATP(e) to ADP(e) by ENTPDase 2 activity facilitates the accumulated ADP(e) to activate P2Y(13) receptors, which mediate complete RVD.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Carcinoma Hepatocelular/metabolismo , Tamaño de la Célula , Neoplasias Hepáticas/metabolismo , Adenosina Difosfato/análogos & derivados , Compuestos Azo/farmacología , Brefeldino A/farmacología , Carbenoxolona/farmacología , Línea Celular Tumoral , Exocitosis/efectos de los fármacos , Humanos , Soluciones Hipotónicas , Péptidos y Proteínas de Señalización Intracelular , Inhibidores de la Síntesis de la Proteína/farmacología , Antagonistas del Receptor Purinérgico P2/farmacología , Fosfato de Piridoxal/análogos & derivados , Fosfato de Piridoxal/farmacología , Receptores Purinérgicos P2
19.
Mol Pharmacol ; 83(5): 1087-98, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23462507

RESUMEN

G protein-coupled receptor signaling does not result from sequential activation of a linear pathway of proteins/enzymes, but rather from complex interactions of multiple, branched signaling routes, i.e., signaling networks. In this work we present an exhaustive study of the cross-talk between H1 and H2 histamine receptors (H1R and H2R) in U937 cells and Chinese hamster ovary-transfected cells. By desensitization assays we demonstrated the existence of a crossdesensitization between both receptors independent of protein kinase A or C. H1R-agonist stimulation inhibited cell proliferation and induced apoptosis in U937 cells following treatment of 48 hours. H1R-induced antiproliferative and apoptotic response was inhibited by an H2R agonist suggesting that the cross-talk between both receptors modifies their function. Binding and confocal microscopy studies revealed cointernalization of both receptors upon treatment with the agonists. To evaluate potential heterodimerization of the receptors, sensitized emission fluorescence resonance energy transfer experiments were performed in human embryonic kidney 293T cells using H1R-cyan fluorescent protein and H2R-yellow fluorescent protein. To our knowledge these findings may represent the first demonstration of agonist-induced heterodimerization of the H1R and H2R. In addition, we also show that the inhibition of the internalization process did not prevent receptor crossdesensitization, which was mediated by G protein-coupled receptor kinase 2. Our study provides new insights into the complex signaling network mediated by histamine and further knowledge for the rational use of its ligands.


Asunto(s)
Receptores Histamínicos H1/metabolismo , Receptores Histamínicos H2/metabolismo , Animales , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Células CHO , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cricetinae , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Quinasa 2 del Receptor Acoplado a Proteína-G/metabolismo , Células HEK293 , Histamina/metabolismo , Agonistas de los Receptores Histamínicos/farmacología , Humanos , Proteína Quinasa C/metabolismo , Transducción de Señal , Células U937
20.
Biochem J ; 442(2): 303-10, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22070747

RESUMEN

Porphyrias are diseases caused by partial deficiencies of haem biosynthesis enzymes. Acute porphyrias are characterized by a neuropsychiatric syndrome with intermittent induction of hepatic ALAS1 (δ-aminolaevulinate synthase 1), the first and rate-limiting enzyme of the haem pathway. Acute porphyria attacks are usually treated by the administration of glucose; its effect is apparently related to its ability to inhibit ALAS1 by modulating insulin plasma levels. It has been shown that insulin blunts hepatocyte ALAS1 induction, by disrupting the interaction of FOXO1 (forkhead box O1) and PGC-1α (peroxisome-proliferator-activated receptor γ co-activator 1α). We evaluated the expression of ALAS1 in a murine model of diabetes and determined the effects of the insulinomimetic vanadate on the enzyme regulation to evaluate its potential for the treatment of acute porphyria attacks. Both ALAS1 mRNA and protein content were induced in diabetic animals, accompanied by decreased Akt phosphorylation and increased nuclear FOXO1, PGC-1α and FOXO1-PGC-1α complex levels. Vanadate reversed ALAS1 induction, with a concomitant PI3K (phosphoinositide 3-kinase)/Akt pathway activation and subsequent reduction of nuclear FOXO1, PGC-1α and FOXO1-PGC-1α complex levels. These findings support the notion that the FOXO1-PGC-1α complex is involved in the control of ALAS1 expression and suggest further that a vanadate-based therapy could be beneficial for the treatment of acute porphyria attacks.


Asunto(s)
5-Aminolevulinato Sintetasa/genética , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Factores de Transcripción Forkhead/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , 5-Aminolevulinato Sintetasa/metabolismo , Animales , Secuencia de Bases , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Regulación hacia Abajo , Proteína Forkhead Box O1 , Humanos , Insulina/farmacología , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Complejos Multiproteicos/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Fosforilación/efectos de los fármacos , Porfiria Intermitente Aguda/tratamiento farmacológico , Porfiria Intermitente Aguda/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transactivadores/metabolismo , Factores de Transcripción , Vanadatos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA