Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Physiol ; 595(16): 5415-5424, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28028818

RESUMEN

During health, animal sleep is regulated by an internal clock and by the duration of prior wakefulness. During sickness, sleep is regulated by cytokines released from either peripheral cells or from cells within the nervous system. These cytokines regulate central nervous system neurons to induce sleep. Recent research in the invertebrates Caenorhabditis elegans and Drosophila melanogaster has led to new insights into the mechanism of sleep during sickness. Sickness is triggered by exposure to environments such as infection, heat, or ultraviolet light irradiation, all of which cause cellular stress. Epidermal growth factor is released from stressed cells and signals to activate central neuroendocrine cell(s). These neuron(s) release neuropeptides including those containing an amidated arginine(R)-phenylalanine(F) motif at their C-termini (RFamide peptides). Importantly, mechanisms regulating sickness sleep are partially distinct from those regulating healthy sleep. We will here review key findings that have elucidated the central neuroendocrine mechanism of sleep during sickness. Adaptive mechanisms employed in the control of sickness sleep may play a role in correcting cellular homeostasis after various insults. We speculate that these mechanisms may play a maladaptive role in human pathological conditions such as in the fatigue and anorexia associated with autoimmune diseases, with major depression, and with unexplained chronic fatigue.


Asunto(s)
Enfermedad , Invertebrados , Sueño/fisiología , Animales , Citocinas/metabolismo , Humanos
2.
Nat Protoc ; 14(5): 1455-1488, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30953041

RESUMEN

Sleep is nearly universal among animals, yet remains poorly understood. Recent work has leveraged simple model organisms, such as Caenorhabditis elegans and Drosophila melanogaster larvae, to investigate the genetic and neural bases of sleep. However, manual methods of recording sleep behavior in these systems are labor intensive and low in throughput. To address these limitations, we developed methods for quantitative imaging of individual animals cultivated in custom microfabricated multiwell substrates, and used them to elucidate molecular mechanisms underlying sleep. Here, we describe the steps necessary to design, produce, and image these plates, as well as analyze the resulting behavioral data. We also describe approaches for experimentally manipulating sleep. Following these procedures, after ~2 h of experimental preparation, we are able to simultaneously image 24 C. elegans from the second larval stage to adult stages or 20 Drosophila larvae during the second instar life stage at a spatial resolution of 10 or 27 µm, respectively. Although this system has been optimized to measure activity and quiescence in Caenorhabditis larvae and adults and in Drosophila larvae, it can also be used to assess other behaviors over short or long periods. Moreover, with minor modifications, it can be adapted for the behavioral monitoring of a wide range of small animals.


Asunto(s)
Caenorhabditis elegans/fisiología , Drosophila melanogaster/fisiología , Procesamiento de Imagen Asistido por Computador/métodos , Larva/fisiología , Sueño/fisiología , Animales , Conducta Animal/fisiología , Microscopía , Fotograbar
3.
Sci Rep ; 8(1): 6918, 2018 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-29720602

RESUMEN

Appropriate decision-making is essential for ensuring survival; one such decision is whether to eat. Overall metabolic state and the safety of food are the two factors we examined using C. elegans to ask whether the metabolic state regulates neuronal activities and corresponding feeding behavior. We monitored the activity of sensory neurons that are activated by nutritious (or appetitive) stimuli (ASI) and aversive stimuli (ASH) in starved vs. well-fed worms during stimuli presentation. Starvation reduces ASH activity to aversive stimuli while increasing ASI activity to nutritious stimuli, showing the responsiveness of each neuron is modulated by overall metabolic state. When we monitored satiety quiescence behavior that reflects the overall metabolic state, ablation of ASI and ASH produce the opposite behavior, showing the two neurons interact to control the decision to eat or not. This circuit provides a simple approach to how neurons handle sensory conflict and reach a decision that is translated to behavior.


Asunto(s)
Estimulantes del Apetito , Agentes Aversivos , Caenorhabditis elegans/fisiología , Conducta Alimentaria , Respuesta de Saciedad , Animales , Ciencias Bioconductuales , Señales (Psicología) , Locomoción , Impresión Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA