RESUMEN
Eutrophication of the planet's aquatic systems is increasing at an unprecedented rate. In freshwater systems, nitrate-one of the nutrients responsible for eutrophication-is linked to biodiversity losses and ecosystem degradation. One of the main sources of freshwater nitrate pollution in New Zealand is agriculture. New Zealand's pastoral farming system relies heavily on the application of chemical fertilisers. These fertilisers in combination with animal urine, also high in nitrogen, result in high rates of nitrogen leaching into adjacent aquatic systems. In addition to nitrogen, livestock waste commonly carries human and animal enteropathogenic bacteria, many of which can survive in freshwater environments. Two strains of enteropathogenic bacteria found in New Zealand cattle, are K99 and Shiga-toxin producing Escherichia coli (STEC). To better understand the effects of ambient nitrate concentrations in the water column on environmental enteropathogenic bacteria survival, a microcosm experiment with three nitrate-nitrogen concentrations (0, 1, and 3 mg NO3-N /L), two enteropathogenic bacterial strains (STEC O26-human, and K99-animal), and two water types (sterile and containing natural microbiota) was run. Both STEC O26 and K99 reached 500 CFU/10 ml in both water types at all three nitrate concentrations within 24 hours and remained at those levels for the full 91 days of the experiment. Although enteropathogenic strains showed no response to water column nitrate concentrations, the survival of background Escherichia coli, imported as part of the in-stream microbiota did, surviving longer in 1 and 3 mg NO3-N/Lconcentrations (P < 0.001). While further work is needed to fully understand how nitrate enrichment and in-stream microbiota may affect the viability of human and animal pathogens in freshwater systems, it is clear that these two New Zealand strains of STEC O26 and K99 can persist in river water for extended periods alongside some natural microbiota.
Asunto(s)
Escherichia coli Enteropatógena , Infecciones por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Shiga-Toxigénica , Animales , Bovinos , Humanos , Escherichia coli Enteropatógena/metabolismo , Nitratos , Infecciones por Escherichia coli/microbiología , Ecosistema , Fertilizantes , Proteínas de Escherichia coli/metabolismo , Escherichia coli Shiga-Toxigénica/metabolismo , AguaRESUMEN
Four microbes (Campylobacter spp., Escherichia coli, Cryptosporidium spp. and Giardia spp.) were monitored in 16 waterways that supply public drinking water for 13 New Zealand towns and cities. Over 500 samples were collected from the abstraction point at each study site every three months between 2009 and 2019. The waterways represent a range from small to large, free flowing to reservoir impoundments, draining catchments of entirely native vegetation to those dominated by pastoral agriculture. We used machine learning algorithms to explore the relative contribution of land use, catchment geology, vegetation, topography, and water quality characteristics of the catchment to determining the abundance and/or presence of each microbe. Sites on rivers draining predominantly agricultural catchments, the Waikato River, Oroua River and Waiorohi Stream had all four microbes present, often in high numbers, throughout the sampling interval. Other sites, such as the Hutt River and Big Huia Creek in Wellington which drain catchments of native vegetation, never had pathogenic microbes detected, or unsafe levels of E. coli. Boosted Regression Tree models could predict abundances and presence/absence of all four microbes with good precision using a wide range of potential environmental predictors covering land use, geology, vegetation, topography, and nutrient concentrations. Models were more accurate for protozoa than bacteria but did not differ markedly in their ability to predict abundance or presence/absence. Environmental drivers of microbe abundance or presence/absence also differed depending on whether the microbe was protozoan or bacterial. Protozoa were more prevalent in waterways with lower water quality, higher numbers of ruminants in the catchment, and in September and December. Bacteria were more abundant with higher rainfall, saturated soils, and catchments with greater than 35% of the land in agriculture. Although modern water treatment protocols will usually remove many pathogens from drinking water, several recent outbreaks of waterborne disease due to treatment failures, have highlighted the need to manage water supplies on multiple fronts. This research has identified potential catchment level variables, and thresholds, that could be better managed to reduce the potential for pathogens to enter drinking water supplies.