Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
PLoS Genet ; 20(6): e1011317, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38843312

RESUMEN

Evaluation of the apportionment of genetic diversity of human bacterial commensals within and between human populations is an important step in the characterization of their evolutionary potential. Recent studies showed a correlation between the genomic diversity of human commensal strains and that of their host, but the strength of this correlation and of the geographic structure among human populations is a matter of debate. Here, we studied the genomic diversity and evolution of the phylogenetically related oro-nasopharyngeal healthy-carriage Streptococcus mitis and Streptococcus pneumoniae, whose lifestyles range from stricter commensalism to high pathogenic potential. A total of 119 S. mitis genomes showed higher within- and among-host variation than 810 S. pneumoniae genomes in European, East Asian and African populations. Summary statistics of the site-frequency spectrum for synonymous and non-synonymous variation and ABC modelling showed this difference to be due to higher ancestral bacterial population effective size (Ne) in S. mitis, whose genomic variation has been maintained close to mutation-drift equilibrium across (at least many) generations, whereas S. pneumoniae has been expanding from a smaller ancestral bacterial population. Strikingly, both species show limited differentiation among human populations. As genetic differentiation is inversely proportional to the product of effective population size and migration rate (Nem), we argue that large Ne have led to similar differentiation patterns, even if m is very low for S. mitis. We conclude that more diversity within than among human populations and limited population differentiation must be common features of the human microbiome due to large Ne.


Asunto(s)
Evolución Molecular , Variación Genética , Genoma Bacteriano , Streptococcus mitis , Streptococcus pneumoniae , Streptococcus mitis/genética , Humanos , Streptococcus pneumoniae/genética , Filogenia , Genética de Población
2.
Gastroenterology ; 164(6): 937-952.e13, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36657529

RESUMEN

BACKGROUND & AIMS: Tissue fibrosis results from uncontrolled healing responses leading to excessive mesenchymal cell activation and collagen and other extracellular matrix deposition. In the gastrointestinal tract, fibrosis leads to narrowing of the lumen and stricture formation. A drug treatment to prevent fibrosis and strictures in the gastrointestinal tract would be transformational for patient care. We aimed to develop a stricture treatment with the following characteristics and components: a small molecule with strong antifibrotic effects that is delivered locally at the site of the stricture to ensure correct lesional targeting while protecting the systemic circulation, and that is formulated with sustained-release properties to act throughout the wound healing processes. METHODS: A high-throughput drug screening was performed to identify small molecules with antifibrotic properties. Next, we formulated an antifibrotic small molecule for sustained release and tested its antifibrotic potential in 3 animal models of fibrosis. RESULTS: Sulconazole, a US Food and Drug Administration-approved drug for fungal infections, was found to have strong antifibrotic properties. Sulconazole was formulated as sulconazole nanocrystals for sustained release. We found that sulconazole nanocrystals provided superior or equivalent fibrosis prevention with less frequent dosing in mouse models of skin and intestinal tissue fibrosis. In a patient-like swine model of bowel stricture, a single injection of sulconazole nanocrystals prevented stricture formation. CONCLUSIONS: The current data lay the foundation for further studies to improve the management of a range of diseases and conditions characterized by tissue fibrosis.


Asunto(s)
Colágeno , Matriz Extracelular , Ratones , Animales , Porcinos , Constricción Patológica , Preparaciones de Acción Retardada , Matriz Extracelular/patología , Fibrosis
3.
J Control Release ; 362: 371-380, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37657693

RESUMEN

Effective eye drop delivery systems for treating diseases of the posterior segment have yet to be clinically validated. Further, adherence to eye drop regimens is often problematic due to the difficulty and inconvenience of repetitive dosing. Here, we describe a strategy for topically dosing a peptide-drug conjugate to achieve effective and sustained therapeutic sunitinib concentrations to protect retinal ganglion cells (RGCs) in a rat model of optic nerve injury. We combined two promising delivery technologies, namely, a hypotonic gel-forming eye drop delivery system, and an engineered melanin binding and cell-penetrating peptide that sustains intraocular drug residence time. We found that once daily topical dosing of HR97-SunitiGel provided up to 2 weeks of neuroprotection after the last dose, effectively doubling the therapeutic window observed with SunitiGel. For chronic ocular diseases affecting the posterior segment, the convenience of an eye drop combined with intermittent dosing frequency could result in greater patient adherence, and thus, improved disease management.

4.
Nat Commun ; 14(1): 2509, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37130851

RESUMEN

Sustained drug delivery strategies have many potential benefits for treating a range of diseases, particularly chronic diseases that require treatment for years. For many chronic ocular diseases, patient adherence to eye drop dosing regimens and the need for frequent intraocular injections are significant barriers to effective disease management. Here, we utilize peptide engineering to impart melanin binding properties to peptide-drug conjugates to act as a sustained-release depot in the eye. We develop a super learning-based methodology to engineer multifunctional peptides that efficiently enter cells, bind to melanin, and have low cytotoxicity. When the lead multifunctional peptide (HR97) is conjugated to brimonidine, an intraocular pressure lowering drug that is prescribed for three times per day topical dosing, intraocular pressure reduction is observed for up to 18 days after a single intracameral injection in rabbits. Further, the cumulative intraocular pressure lowering effect increases ~17-fold compared to free brimonidine injection. Engineered multifunctional peptide-drug conjugates are a promising approach for providing sustained therapeutic delivery in the eye and beyond.


Asunto(s)
Sistemas de Liberación de Medicamentos , Melaninas , Animales , Conejos , Tartrato de Brimonidina , Péptidos , Aprendizaje Automático
5.
Microb Genom ; 7(9)2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34550067

RESUMEN

Streptococcus pneumoniae is an important global pathogen that causes bacterial pneumonia, sepsis and meningitis. Beta-lactam antibiotics are the first-line treatment for pneumococcal disease, however, their effectiveness is hampered by beta-lactam resistance facilitated by horizontal genetic transfer (HGT) with closely related species. Although interspecies HGT is known to occur among the species of the genus Streptococcus, the rates and effects of HGT between Streptococcus pneumoniae and its close relatives involving the penicillin binding protein (pbp) genes remain poorly understood. Here we applied the fastGEAR tool to investigate interspecies HGT in pbp genes using a global collection of whole-genome sequences of Streptococcus mitis, Streptococcus oralis and S. pneumoniae. With these data, we established that pneumococcal serotypes 6A, 13, 14, 16F, 19A, 19F, 23F and 35B were the highest-ranking serotypes with acquired pbp fragments. S. mitis was a more frequent pneumococcal donor of pbp fragments and a source of higher pbp nucleotide diversity when compared with S. oralis. Pneumococci that acquired pbp fragments were associated with a higher minimum inhibitory concentration (MIC) for penicillin compared with pneumococci without acquired fragments. Together these data indicate that S. mitis contributes to reduced ß-lactam susceptibility among commonly carried pneumococcal serotypes that are associated with long carriage duration and high recombination frequencies. As pneumococcal vaccine programmes mature, placing increasing pressure on the pneumococcal population structure, it will be important to monitor the influence of antimicrobial resistance HGT from commensal streptococci such as S. mitis.


Asunto(s)
Farmacorresistencia Bacteriana/genética , Nasofaringe/microbiología , Proteínas de Unión a las Penicilinas/genética , Serogrupo , Streptococcus mitis/genética , Streptococcus pneumoniae/clasificación , Streptococcus pneumoniae/genética , Proteínas Bacterianas/genética , Transferencia de Gen Horizontal , Genes Bacterianos , Humanos , Pruebas de Sensibilidad Microbiana , Penicilinas , Filogenia , Infecciones Neumocócicas/microbiología , Vacunas Neumococicas , Streptococcus/clasificación , Streptococcus/genética , Streptococcus oralis , Secuenciación Completa del Genoma , Resistencia betalactámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA