Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 74(3): 571-583.e8, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-30898438

RESUMEN

In mitosis, cells inactivate DNA double-strand break (DSB) repair pathways to preserve genome stability. However, some early signaling events still occur, such as recruitment of the scaffold protein MDC1 to phosphorylated histone H2AX at DSBs. Yet, it remains unclear whether these events are important for maintaining genome stability during mitosis. Here, we identify a highly conserved protein-interaction surface in MDC1 that is phosphorylated by CK2 and recognized by the DNA-damage response mediator protein TOPBP1. Disruption of MDC1-TOPBP1 binding causes a specific loss of TOPBP1 recruitment to DSBs in mitotic but not interphase cells, accompanied by mitotic radiosensitivity, increased micronuclei, and chromosomal instability. Mechanistically, we find that TOPBP1 forms filamentous structures capable of bridging MDC1 foci in mitosis, indicating that MDC1-TOPBP1 complexes tether DSBs until repair is reactivated in the following G1 phase. Thus, we reveal an important, hitherto-unnoticed cooperation between MDC1 and TOPBP1 in maintaining genome stability during cell division.


Asunto(s)
Proteínas Portadoras/genética , Inestabilidad Cromosómica/genética , Proteínas de Unión al ADN/genética , Mitosis/genética , Proteínas Nucleares/genética , Transactivadores/genética , Proteínas Adaptadoras Transductoras de Señales , Proteínas de Ciclo Celular , Roturas del ADN de Doble Cadena , Daño del ADN/genética , Reparación del ADN/genética , Fase G1/genética , Genoma Humano/genética , Inestabilidad Genómica/genética , Histonas , Humanos , Fosforilación , Transducción de Señal/genética
2.
Proc Natl Acad Sci U S A ; 121(40): e2405455121, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39320919

RESUMEN

The hair bundle, or stereocilia bundle, is the mechanosensory compartment of hair cells (HCs) in the inner ear. To date, most mechanistic studies have focused on stereocilia bundle morphogenesis, and it remains unclear how this organelle critical for hearing preserves its precise dimensions during life in mammals. The GPSM2-GNAI complex occupies the distal tip of stereocilia in the tallest row and is required for their elongation during development. Here, we ablate GPSM2-GNAI in adult mouse HCs after normal stereocilia elongation is completed. We observe a progressive height reduction of the tallest row stereocilia totaling ~600 nm after 12 wk in Gpsm2 mutant inner HCs. To measure GPSM2 longevity at tips, we generated a HaloTag-Gpsm2 mouse strain and performed pulse-chase experiments in vivo. Estimates using pulse-chase or tracking loss of GPSM2 immunolabeling following Gpsm2 inactivation suggest that GPSM2 is relatively long-lived at stereocilia tips with a half-life of 9 to 10 d. Height reduction coincides with dampened auditory brainstem responses evoked by low-frequency stimuli in particular. Finally, GPSM2 is required for normal tip enrichment of elongation complex (EC) partners MYO15A, WHRN, and EPS8, mirroring their established codependence during development. Taken together, our results show that the EC is also essential in mature HCs to ensure precise and stable stereocilia height and for sensitive detection of a full range of sound frequencies.


Asunto(s)
Estereocilios , Animales , Estereocilios/metabolismo , Ratones , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/fisiología , Células Ciliadas Auditivas Internas/metabolismo , Audición/fisiología
3.
Reproduction ; 168(4)2024 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-39074054

RESUMEN

In Brief: Unconventional oil and natural gas (UOG) operations, particularly hydraulic fracturing, have revolutionized oil and gas production, using and containing complex mixtures of chemicals that may impact reproductive health. While there is growing evidence for effects on births in hydraulic fracturing/UOG regions and good mechanistic evidence for potential reproductive toxicity, there is much research still needed to make firm conclusions about these practices and reproductive health. Abstract: Unconventional oil and natural gas (UOG) operations have emerged over the last four decades to transform oil and gas production in the United States and globally by unlocking previously inaccessible hydrocarbon deposits. UOG development utilizes many compounds associated with conventional oil and gas, as well as some specific to UOG extraction, particularly during hydraulic fracturing (HF). While research is increasing on UOG chemicals and their mixtures, this review discusses the current evidence for reproductive toxicity following exposures to UOG/HF mixtures. These complex chemical mixtures have been demonstrated to interact with numerous mechanisms known to influence reproductive health. A growing number of environmental and controlled laboratory testing studies have reported adverse reproductive health effects in animals exposed to various UOG chemical mixtures. An expanding body of epidemiological literature has assessed adverse birth outcomes, although none has directly examined reproductive measures such as time to pregnancy, semen quality, and other direct measures of fertility. The existing literature provides moderate evidence for decreased birth weights, increased risk of small for gestational age and/or preterm birth, increased congenital abnormalities, and increased infant mortality, though importantly, studies are widely variable in methods used. Most studies utilized distance from UOG operations as an exposure proxy and did not measure actual chemical exposures experienced by those living near these operations. As such, while there is growing evidence for effects on births in these regions and good mechanistic evidence for potential reproductive toxicity, there is much research still needed to make firm conclusions about UOG development and reproductive health.


Asunto(s)
Exposición a Riesgos Ambientales , Fracking Hidráulico , Reproducción , Salud Reproductiva , Humanos , Reproducción/efectos de los fármacos , Animales , Exposición a Riesgos Ambientales/efectos adversos , Femenino , Embarazo , Gas Natural , Masculino
4.
J Clin Apher ; 39(1): e22107, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38404046

RESUMEN

BACKGROUND: Throughout the COVID-19 pandemic, the mortality of critically ill patients remained high. Our group developed a treatment regimen targeting sepsis and ARDS which we labeled "triple therapy" consisting of (1) corticosteroids, (2) therapeutic plasma exchange (TPE), and (3) timely intubation with lung protective ventilation. Our propensity analysis assesses the impact of triple therapy on survival in COVID-19 patients with sepsis and ARDS. METHODS: Retrospective propensity analysis comparing triple therapy to no triple therapy in adult critically ill COVID-19 patients admitted to the Intensive Care Unit at Lexington Medical Center from 1 March 2020 through 31 October 2021. RESULTS: Eight hundred and fifty-one patients were admitted with COVID-19 and 53 clinical and laboratory variables were analyzed. Multivariable analysis revealed that triple therapy was associated with increased survival (OR: 1.91; P = .008). Two propensity score-adjusted models demonstrated an increased likelihood of survival in patients receiving triple therapy. Patients with thrombocytopenia were among those most likely to experience increased survival if they received early triple therapy. Decreased survival was observed with endotracheal intubation ≥7 days from hospital admission (P < .001) and there was a trend toward decreased survival if TPE was initiated ≥6 days from hospital admission (P = .091). CONCLUSION: Our analysis shows that early triple therapy, defined as high-dose methylprednisolone, TPE, and timely invasive mechanical ventilation within the first 96 hours of admission, may improve survival in critically ill septic patients with ARDS secondary to COVID-19 infection. Further studies are needed to define specific phenotypes and characteristics that will identify those patients most likely to benefit.


Asunto(s)
COVID-19 , Síndrome de Dificultad Respiratoria , Sepsis , Adulto , Humanos , COVID-19/complicaciones , COVID-19/terapia , Intercambio Plasmático/efectos adversos , SARS-CoV-2 , Estudios Retrospectivos , Enfermedad Crítica/terapia , Pandemias , Sepsis/complicaciones , Sepsis/terapia , Síndrome de Dificultad Respiratoria/etiología , Síndrome de Dificultad Respiratoria/terapia
5.
Nucleic Acids Res ; 50(14): 8279-8289, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-35819203

RESUMEN

The RAD9-RAD1-HUS1 (9-1-1) clamp forms one half of the DNA damage checkpoint system that signals the presence of substantial regions of single-stranded DNA arising from replication fork collapse or resection of DNA double strand breaks. Loaded at the 5'-recessed end of a dsDNA-ssDNA junction by the RAD17-RFC clamp loader complex, the phosphorylated C-terminal tail of the RAD9 subunit of 9-1-1 engages with the mediator scaffold TOPBP1 which in turn activates the ATR kinase, localised through the interaction of its constitutive partner ATRIP with RPA-coated ssDNA. Using cryogenic electron microscopy (cryoEM) we have determined the structure of a complex of the human RAD17-RFC clamp loader bound to human 9-1-1, engaged with a dsDNA-ssDNA junction. The structure answers the key questions of how RAD17 confers specificity for 9-1-1 over PCNA, and how the clamp loader specifically recognises the recessed 5' DNA end and fixes the orientation of 9-1-1 on the ssDNA.


Asunto(s)
Proteínas de Ciclo Celular , ADN de Cadena Simple , Proteínas de Ciclo Celular/metabolismo , ADN/química , Daño del ADN , ADN de Cadena Simple/genética , Humanos , Proteína de Replicación C/metabolismo
6.
Phys Rev Lett ; 128(20): 203603, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35657853

RESUMEN

We report tunable excitation-induced dipole-dipole interactions between silicon-vacancy color centers in diamond at cryogenic temperatures. These interactions couple centers into collective states, and excitation-induced shifts tag the excitation level of these collective states against the background of excited single centers. By characterizing the phase and amplitude of the spectrally resolved interaction-induced signal, we observe oscillations in the interaction strength and population state of the collective states as a function of excitation pulse area. Our results demonstrate that excitation-induced dipole-dipole interactions between color centers provide a route to manipulating collective intercenter states in the context of a congested, inhomogeneous ensemble.

7.
J Great Lakes Res ; 48(3): 849-855, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36591538

RESUMEN

Efforts to make research environments more inclusive and diverse are beneficial for the next generation of Great Lakes researchers. The global COVID-19 pandemic introduced circumstances that forced graduate programs and academic institutions to re-evaluate and promptly pivot research traditions, such as weekly seminar series, which are critical training grounds and networking opportunities for early career researchers (ECRs). While several studies have established that academics with funded grants and robust networks were better able to weather the abrupt changes in research and closures of institutions, ECRs did not. In response, both existing and novel partnerships provided a resilient network to support ECRs at an essential stage of their career development. Considering these challenges, we sought to re-frame the seminar series as a virtual collaboration for ECRs. Two interdisciplinary graduate programs, located in different countries (Windsor, Canada, and Detroit, USA) invested in a year-long partnership to deliver a virtual-only seminar series that intentionally promoted: the co-creation of protocols and co-led roles, the amplification of justice, equity, diversity and inclusion throughout all aspects of organization and representation, engagement and amplification through social media, the integration of social, scientific and cultural research disciplines, all of which collectively showcased the capacity of our ECRs to lead, organize and communicate. This approach has great potential for application across different communities to learn through collaboration and sharing, and to empower the next generation to find new ways of working together.

8.
Phys Rev Lett ; 126(21): 213601, 2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34114873

RESUMEN

We characterize a high-density sample of negatively charged silicon-vacancy (SiV^{-}) centers in diamond using collinear optical multidimensional coherent spectroscopy. By comparing the results of complementary signal detection schemes, we identify a hidden population of SiV^{-} centers that is not typically observed in photoluminescence and which exhibits significant spectral inhomogeneity and extended electronic T_{2} times. The phenomenon is likely caused by strain, indicating a potential mechanism for controlling electric coherence in color-center-based quantum devices.

9.
Mol Cell ; 51(6): 723-736, 2013 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-24074952

RESUMEN

The BRCT-domain protein Rad4(TopBP1) facilitates activation of the DNA damage checkpoint in Schizosaccharomyces pombe by physically coupling the Rad9-Rad1-Hus1 clamp, the Rad3(ATR) -Rad26(ATRIP) kinase complex, and the Crb2(53BP1) mediator. We have now determined crystal structures of the BRCT repeats of Rad4(TopBP1), revealing a distinctive domain architecture, and characterized their phosphorylation-dependent interactions with Rad9 and Crb2(53BP1). We identify a cluster of phosphorylation sites in the N-terminal region of Crb2(53BP1) that mediate interaction with Rad4(TopBP1) and reveal a hierarchical phosphorylation mechanism in which phosphorylation of Crb2(53BP1) residues Thr215 and Thr235 promotes phosphorylation of the noncanonical Thr187 site by scaffolding cyclin-dependent kinase (CDK) recruitment. Finally, we show that the simultaneous interaction of a single Rad4(TopBP1) molecule with both Thr187 phosphorylation sites in a Crb2(53BP1) dimer is essential for establishing the DNA damage checkpoint.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Daño del ADN/genética , Proteínas de Unión al ADN , Proteínas Nucleares/metabolismo , Fosforilación/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Transglutaminasas , Sitios de Unión , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Cristalografía por Rayos X , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Unión Proteica , Estructura Terciaria de Proteína , Schizosaccharomyces , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Transglutaminasas/química , Transglutaminasas/genética , Transglutaminasas/metabolismo
10.
Opt Express ; 28(15): 21825-21834, 2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-32752454

RESUMEN

We demonstrate simple optical frequency combs based on semiconductor quantum well laser diodes. The frequency comb spectrum can be tailored by choice of material properties and quantum-well widths, providing spectral flexibility. We demonstrate the correlation in the phase fluctuations between two devices on the same chip by generating a radio-frequency dual comb spectrum.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA