Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Plant Cell ; 35(1): 318-335, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36409008

RESUMEN

Nitrate is a major nutrient and osmoticum for plants. To deal with fluctuating nitrate availability in soils, plants store this nutrient in their vacuoles. Chloride channel a (CLCa), a 2NO3-/1H+ exchanger localized to the vacuole in Arabidopsis (Arabidopsis thaliana), ensures this storage process. CLCa belongs to the CLC family, which includes anion/proton exchangers and anion channels. A mutation in a glutamate residue conserved across CLC exchangers is likely responsible for the conversion of exchangers to channels. Here, we show that CLCa with a mutation in glutamate 203 (E203) behaves as an anion channel in its native membrane. We introduced the CLCaE203A point mutation to investigate its physiological importance into the Arabidopsis clca knockout mutant. These CLCaE203A mutants displayed a growth deficit linked to the disruption of water homeostasis. Additionally, CLCaE203A expression failed to complement the defect in nitrate accumulation of clca and favored higher N-assimilation at the vegetative stage. Further analyses at the post-flowering stages indicated that CLCaE203A expression results in an increase in N uptake allocation to seeds, leading to a higher nitrogen use efficiency compared to the wild-type. Altogether, these results point to the critical function of the CLCa exchanger on the vacuole for plant metabolism and development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Transportadores de Nitrato , Nitratos/metabolismo , Protones , Vacuolas/metabolismo , Nitrógeno/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Aniones/metabolismo , Plantas/metabolismo , Mutación/genética , Regulación de la Expresión Génica de las Plantas
2.
New Phytol ; 239(6): 2225-2234, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37434346

RESUMEN

Plant transpiration is controlled by stomata, with S- and R-type anion channels playing key roles in guard cell action. Arabidopsis mutants lacking the ALMT12/QUAC1 R-type anion channel function in guard cells show only a partial reduction in R-type channel currents. The molecular nature of these remaining R-type anion currents is still unclear. To further elucidate this, patch clamp, transcript and gas-exchange measurements were performed with wild-type (WT) and different almt mutant plants. The R-type current fraction in the almt12 mutant exhibited the same voltage dependence, susceptibility to ATP block and lacked a chloride permeability as the WT. Therefore, we asked whether the R-type anion currents in the ALMT12/QUAC1-free mutant are caused by additional ALMT isoforms. In WT guard cells, ALMT12, ALMT13 and ALMT14 transcripts were detected, whereas only ALMT13 was found expressed in the almt12 mutant. Substantial R-type anion currents still remained active in the almt12/13 and almt12/14 double mutants as well as the almt12/13/14 triple mutant. In good agreement, CO2 -triggered stomatal closure required the activity of ALMT12 but not ALMT13 or ALMT14. The results suggest that, with the exception of ALMT12, channel species other than ALMTs carry the guard cell R-type anion currents.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Estomas de Plantas/fisiología , Arabidopsis/genética , Aniones , Ácido Abscísico
3.
Proc Natl Acad Sci U S A ; 117(26): 15343-15353, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32546525

RESUMEN

Ion transporters are key players of cellular processes. The mechanistic properties of ion transporters have been well elucidated by biophysical methods. Meanwhile, the understanding of their exact functions in cellular homeostasis is limited by the difficulty of monitoring their activity in vivo. The development of biosensors to track subtle changes in intracellular parameters provides invaluable tools to tackle this challenging issue. AtCLCa (Arabidopsis thaliana Chloride Channel a) is a vacuolar NO3-/H+ exchanger regulating stomata aperture in Athaliana Here, we used a genetically encoded biosensor, ClopHensor, reporting the dynamics of cytosolic anion concentration and pH to monitor the activity of AtCLCa in vivo in Arabidopsis guard cells. We first found that ClopHensor is not only a Cl- but also, an NO3- sensor. We were then able to quantify the variations of NO3- and pH in the cytosol. Our data showed that AtCLCa activity modifies cytosolic pH and NO3- In an AtCLCa loss of function mutant, the cytosolic acidification triggered by extracellular NO3- and the recovery of pH upon treatment with fusicoccin (a fungal toxin that activates the plasma membrane proton pump) are impaired, demonstrating that the transport activity of this vacuolar exchanger has a profound impact on cytosolic homeostasis. This opens a perspective on the function of intracellular transporters of the Chloride Channel (CLC) family in eukaryotes: not only controlling the intraorganelle lumen but also, actively modifying cytosolic conditions.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Canales de Cloruro/metabolismo , Citosol/química , Homeostasis/fisiología , Nitratos/química , Proteínas de Arabidopsis/genética , Canales de Cloruro/genética , Citosol/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Concentración de Iones de Hidrógeno , Nitratos/metabolismo
4.
New Phytol ; 229(2): 755-762, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33007120

RESUMEN

The coordinated control of ion transport across the two major membranes of differentiated plant cells, the plasma and the vacuolar membranes, is fundamental in cell physiology. The stomata responses to the fluctuating environmental conditions are an illustrative example. Indeed, they rely on the coordination of ion fluxes between the different cell compartments. The cytosolic environment, which is an interface between intracellular compartments, and the activity of the ion transporters localised in the different membranes influence one each other. Here we analyse the molecular mechanisms connecting and modulating the transport processes at both the plasma and the vacuolar membranes of guard cells.


Asunto(s)
Arabidopsis , Transporte Biológico , Membrana Celular/metabolismo , Transporte Iónico , Vacuolas/metabolismo
5.
Plant Cell ; 29(10): 2552-2569, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28874508

RESUMEN

Stomatal pores are formed between a pair of guard cells and allow plant uptake of CO2 and water evaporation. Their aperture depends on changes in osmolyte concentration of guard cell vacuoles, specifically of K+ and Mal2- Efflux of Mal2- from the vacuole is required for stomatal closure; however, it is not clear how the anion is released. Here, we report the identification of ALMT4 (ALUMINUM ACTIVATED MALATE TRANSPORTER4) as an Arabidopsis thaliana ion channel that can mediate Mal2- release from the vacuole and is required for stomatal closure in response to abscisic acid (ABA). Knockout mutants showed impaired stomatal closure in response to the drought stress hormone ABA and increased whole-plant wilting in response to drought and ABA. Electrophysiological data show that ALMT4 can mediate Mal2- efflux and that the channel activity is dependent on a phosphorylatable C-terminal serine. Dephosphomimetic mutants of ALMT4 S382 showed increased channel activity and Mal2- efflux. Reconstituting the active channel in almt4 mutants impaired growth and stomatal opening. Phosphomimetic mutants were electrically inactive and phenocopied the almt4 mutants. Surprisingly, S382 can be phosphorylated by mitogen-activated protein kinases in vitro. In brief, ALMT4 likely mediates Mal2- efflux during ABA-induced stomatal closure and its activity depends on phosphorylation.


Asunto(s)
Ácido Abscísico/farmacología , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/metabolismo , Vacuolas/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sequías , Fosforilación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Vacuolas/efectos de los fármacos
6.
Proc Natl Acad Sci U S A ; 119(46): e2216610119, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36343263
8.
Plant Physiol ; 172(2): 1167-1181, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27503602

RESUMEN

The ability to control the cytoplasmic environment is a prerequisite for plants to cope with changing environmental conditions. During salt stress, for instance, Na+ and Cl- are sequestered into the vacuole to help maintain cytosolic ion homeostasis and avoid cellular damage. It has been observed that vacuolar ion uptake is tied to fluxes across the plasma membrane. The coordination of both transport processes and relative contribution to plant adaptation, however, is still poorly understood. To investigate the link between vacuolar anion uptake and whole-plant ion distribution during salinity, we used mutants of the only vacuolar Cl- channel described to date: the Arabidopsis (Arabidopsis thaliana) ALMT9. After 24-h NaCl treatment, almt9 knock-out mutants had reduced shoot accumulation of both Cl- and Na+ In contrast, almt9 plants complemented with a mutant variant of ALMT9 that exhibits enhanced channel activity showed higher Cl- and Na+ accumulation. The altered shoot ion contents were not based on differences in transpiration, pointing to a vacuolar function in regulating xylem loading during salinity. In line with this finding, GUS staining demonstrated that ALMT9 is highly expressed in the vasculature of shoots and roots. RNA-seq analysis of almt9 mutants under salinity revealed specific expression profiles of transporters involved in long-distance ion translocation. Taken together, our study uncovers that the capacity of vacuolar Cl- loading in vascular cells plays a crucial role in controlling whole-plant ion movement rapidly after onset of salinity.


Asunto(s)
Cloruros/metabolismo , Salinidad , Sodio/metabolismo , Vacuolas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , Transporte Iónico/efectos de los fármacos , Iones/metabolismo , Mutación , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/metabolismo , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/genética , Estomas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Cloruro de Sodio/farmacología , Estrés Fisiológico , Xilema/genética , Xilema/metabolismo
10.
J Biol Chem ; 289(37): 25581-9, 2014 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-25028514

RESUMEN

The aluminum-activated malate transporters (ALMTs) form a membrane protein family exhibiting different physiological roles in plants, varying from conferring tolerance to environmental Al(3+) to the regulation of stomatal movement. The regulation of the anion channels of the ALMT family is largely unknown. Identifying intracellular modulators of the activity of anion channels is fundamental to understanding their physiological functions. In this study we investigated the role of cytosolic nucleotides in regulating the activity of the vacuolar anion channel AtALMT9. We found that cytosolic nucleotides modulate the transport activity of AtALMT9. This modulation was based on a direct block of the pore of the channel at negative membrane potentials (open channel block) by the nucleotide and not by a phosphorylation mechanism. The block by nucleotides of AtALMT9-mediated currents was voltage dependent. The blocking efficiency of intracellular nucleotides increased with the number of phosphate groups and ATP was the most effective cellular blocker. Interestingly, the ATP block induced a marked modification of the current-voltage characteristic of AtALMT9. In addition, increased concentrations of vacuolar anions were able to shift the ATP block threshold to a more negative membrane potential. The block of AtALMT9-mediated anion currents by ATP at negative membrane potentials acts as a gate of the channel and vacuolar anion tune this gating mechanism. Our results suggest that anion transport across the vacuolar membrane in plant cells is controlled by cytosolic nucleotides and the energetic status of the cell.


Asunto(s)
Adenosina Trifosfato/metabolismo , Aluminio/metabolismo , Proteínas de Arabidopsis/metabolismo , Canales de Cloruro/metabolismo , Transporte Iónico , Adenosina Trifosfato/química , Aluminio/química , Aniones/química , Aniones/metabolismo , Arabidopsis/química , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Canales de Cloruro/química , Citosol/química , Citosol/metabolismo , Potenciales de la Membrana , Vacuolas/química , Vacuolas/metabolismo
11.
Plant Physiol ; 163(2): 830-43, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23918900

RESUMEN

Aluminum-activated malate transporters (ALMTs) form an important family of anion channels involved in fundamental physiological processes in plants. Because of their importance, the role of ALMTs in plant physiology is studied extensively. In contrast, the structural basis of their functional properties is largely unknown. This lack of information limits the understanding of the functional and physiological differences between ALMTs and their impact on anion transport in plants. This study aimed at investigating the structural organization of the transmembrane domain of the Arabidopsis (Arabidopsis thaliana) vacuolar channel AtALMT9. For that purpose, we performed a large-scale mutagenesis analysis and found two residues that form a salt bridge between the first and second putative transmembrane α-helices (TMα1 and TMα2). Furthermore, using a combination of pharmacological and mutagenesis approaches, we identified citrate as an "open channel blocker" of AtALMT9 and used this tool to examine the inhibition sensitivity of different point mutants of highly conserved amino acid residues. By this means, we found a stretch within the cytosolic moiety of the TMα5 that is a probable pore-forming domain. Moreover, using a citrate-insensitive AtALMT9 mutant and biochemical approaches, we could demonstrate that AtALMT9 forms a multimeric complex that is supposedly composed of four subunits. In summary, our data provide, to our knowledge, the first evidence about the structural organization of an ion channel of the ALMT family. We suggest that AtALMT9 is a tetramer and that the TMα5 domains of the subunits contribute to form the pore of this anion channel.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Canales de Cloruro/química , Canales de Cloruro/metabolismo , Multimerización de Proteína , Vacuolas/metabolismo , Secuencia de Aminoácidos , Aminoácidos/metabolismo , Aniones , Arabidopsis/efectos de los fármacos , Ácido Cítrico/farmacología , Secuencia Conservada/genética , Activación del Canal Iónico/efectos de los fármacos , Malatos/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Proteínas Mutantes/metabolismo , Mutación/genética , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Relación Estructura-Actividad , Nicotiana/efectos de los fármacos , Nicotiana/metabolismo , Vacuolas/efectos de los fármacos
12.
Planta ; 238(2): 283-91, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23645258

RESUMEN

Vitis vinifera L. represents an economically important fruit species. Grape and wine flavour is made from a complex set of compounds. The acidity of berries is a major parameter in determining grape berry quality for wine making and fruit consumption. Despite the importance of malic and tartaric acid (TA) storage and transport for grape berry acidity, no vacuolar transporter for malate or tartrate has been identified so far. Some members of the aluminium-activated malate transporter (ALMT) anion channel family from Arabidopsis thaliana have been shown to be involved in mediating malate fluxes across the tonoplast. Therefore, we hypothesised that a homologue of these channels could have a similar role in V. vinifera grape berries. We identified homologues of the Arabidopsis vacuolar anion channel AtALMT9 through a TBLASTX search on the V. vinifera genome database. We cloned the closest homologue of AtALMT9 from grape berry cDNA and designated it VvALMT9. The expression profile revealed that VvALMT9 is constitutively expressed in berry mesocarp tissue and that its transcription level increases during fruit maturation. Moreover, we found that VvALMT9 is targeted to the vacuolar membrane. Using patch-clamp analysis, we could show that, besides malate, VvALMT9 mediates tartrate currents which are higher than in its Arabidopsis homologue. In summary, in the present study we provide evidence that VvALMT9 is a vacuolar malate channel expressed in grape berries. Interestingly, in V. vinifera, a tartrate-producing plant, the permeability of the channel is apparently adjusted to TA.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Malatos/metabolismo , Transportadores de Anión Orgánico/genética , Tartratos/metabolismo , Vitis/genética , Transporte Biológico , Clonación Molecular , ADN Complementario/genética , Frutas/genética , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Expresión Génica , Genes Reporteros , Transportadores de Anión Orgánico/metabolismo , Técnicas de Placa-Clamp , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Protoplastos , Proteínas Recombinantes de Fusión , Vacuolas/metabolismo , Vitis/citología , Vitis/crecimiento & desarrollo , Vitis/metabolismo
14.
Nat Commun ; 14(1): 7515, 2023 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-37980353

RESUMEN

Voltage-gated and mechanically-gated ion channels are distinct classes of membrane proteins that conduct ions across gated pores and are turned on by electrical or mechanical stimuli, respectively. Here, we describe an Hv channel (a.k.a voltage-dependent H+ channel) from the angiosperm plant A. thaliana that gates with a unique modality as it is turned on by an electrical stimulus only after exposure to a mechanical stimulus, a process that we call priming. The channel localizes in the vascular tissue and has homologs in vascular plants. We find that mechanical priming is not required for activation of non-angiosperm Hvs. Guided by AI-generated structural models of plant Hv homologs, we identify a set of residues playing a crucial role in mechanical priming. We propose that Hvs from angiosperm plants require priming because of a network of hydrophilic/charged residues that locks the channels in a silent resting conformation. Mechanical stimuli destabilize the network allowing the conduction pathway to turn on. In contrast to many other channels and receptors, Hv proteins are not thought to possess mechanisms such as inactivation or desensitization. Our findings demonstrate that angiosperm Hv channels are electrically silent until a mechanical stimulation turns on their voltage-dependent activity.


Asunto(s)
Magnoliopsida , Tracheophyta , Protones , Magnoliopsida/metabolismo , Canales Iónicos/metabolismo , Tracheophyta/metabolismo
15.
Sci Rep ; 13(1): 7647, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37169939

RESUMEN

Land plants regulate their photosynthesis and water transpiration by exchanging gases (CO2 and H2Ovapour) with the atmosphere. These exchanges take place through microscopic valves, called stomata, on the leaf surface. The opening of the stomata is regulated by two guard cells that actively and reversibly modify their turgor pressure to modulate the opening of the stomatal pores. Stomatal function depends on the regulation of the ion transport capacities of cell membranes as well as on the modification of the subcellular organisation of guard cells. Here we report how the vacuolar and cytosolic compartments of guard cells quantitatively participate in stomatal opening. We used a genetically encoded biosensor to visualise changes in ionic concentration during stomatal opening. The 3D reconstruction of living guard cells shows that the vacuole is the responsible for the change in guard cell volume required for stomatal opening.


Asunto(s)
Imagenología Tridimensional , Vacuolas , Vacuolas/metabolismo , Fotosíntesis/fisiología , Hojas de la Planta/metabolismo , Membrana Celular/metabolismo , Estomas de Plantas/fisiología
16.
Plant J ; 67(2): 247-57, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21443686

RESUMEN

Gas exchange in plants is controlled by guard cells, specialized cells acting as turgor pressure-driven valves. Malate is one of the major anions accumulated inside the vacuole during stomatal opening counteracting the positive charge of potassium. AtALMT6, a member of the aluminum-activated malate transporter family, is expressed in guard cells of leaves and stems as well as in flower organs of Arabidopsis thaliana. An AtALMT6-GFP fusion protein was targeted to the vacuolar membrane both in transient and stable expression systems. Patch-clamp experiments on vacuoles isolated from AtALMT6-GFP over-expressing Arabidopsis plants revealed large inward-rectifying malate currents only in the presence of micromolar cytosolic calcium concentrations. Further analyses showed that vacuolar pH and cytosolic malate regulate the threshold of activation of AtALMT6-mediated currents. The interplay of these two factors determines the AtALMT6 function as a malate influx or efflux channel depending on the tonoplast potential. Guard cell vacuoles isolated from Atalmt6 knock-out plants displayed reduced malate currents compared with wild-type vacuoles. This reduction, however, was not accompanied by phenotypic differences in the stomatal movements in knock-out plants, probably because of functional redundancy of malate transporters in guard cell vacuoles.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Malatos/metabolismo , Transportadores de Anión Orgánico/metabolismo , Vacuolas/metabolismo , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico , Calcio/metabolismo , Técnicas de Inactivación de Genes , Concentración de Iones de Hidrógeno , Potenciales de la Membrana , Mutagénesis Insercional , Transportadores de Anión Orgánico/genética , Técnicas de Placa-Clamp , Estomas de Plantas/metabolismo
17.
J Exp Bot ; 63(17): 6187-97, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23105130

RESUMEN

Polyunsaturated fatty acids (PUFAs) are powerful modulators of several animal ion channels. It is shown here that PUFAs strongly affect the activity of the Slow Vacuolar (SV) channel encoded by the plant TPC1 gene. The patch-clamp technique was applied to isolated vacuoles from carrot taproots and Arabidopsis thaliana mesophyll cells and arachidonic acid (AA) was chosen as a model molecule for PUFAs. Our study was extended to different PUFAs including the endogenous alpha-linolenic acid (ALA). The addition of micromolar concentrations of AA reversibly inhibited the SV channel decreasing the maximum open probability and shifting the half activation voltage to positive values. Comparing the effects of different PUFAs, it was found that the length of the lipophilic acyl chain, the number of double bonds and the polar head were critical for channel modulation.The experimental data can be reproduced by a simple three-state model, in which PUFAs do not interact directly with the voltage sensors but affect the voltage-independent transition that leads the channel from the open state to the closed configuration. The results indicate that lipids play an important role in co-ordinating ion channel activities similar to what is known from animal cells.


Asunto(s)
Arabidopsis/fisiología , Ácido Araquidónico/farmacología , Daucus carota/fisiología , Ácidos Grasos Insaturados/farmacología , Canales Iónicos/metabolismo , Vacuolas/metabolismo , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/metabolismo , Ácido Araquidónico/química , Calcio/metabolismo , Canales de Calcio/metabolismo , Daucus carota/efectos de los fármacos , Electrofisiología , Ácidos Grasos Insaturados/química , Activación del Canal Iónico , Cinética , Ácido Linoleico/metabolismo , Potenciales de la Membrana , Células del Mesófilo/fisiología , Modelos Biológicos , Ácidos Oléicos/metabolismo , Técnicas de Placa-Clamp , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/fisiología , Ácido alfa-Linolénico/metabolismo
18.
Plant J ; 63(5): 861-9, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20598093

RESUMEN

Nitrate, the major nitrogen source for plants, can be accumulated in the vacuole. Its transport across the vacuolar membrane is mediated by AtCLCa, an antiporter of the chloride channel (CLC) protein family. In contrast to other CLC family members, AtCLCa transports nitrate coupled to protons. Recently, the different behaviour towards nitrate of CLC proteins has been linked to the presence of a serine or proline in the selectivity filter motif GXGIP. By monitoring AtCLCa activity in its native environment, we show that if proline 160 in AtCLCa is changed to a serine (AtCLCa(P160S) ), the transporter loses its nitrate selectivity, but the anion proton exchange mechanism is unaffected. We also performed in vivo analyses in yeast and Arabidopsis. In contrast to native AtCLCa, expression of AtCLCa(P160S) does not complement either the ΔScCLC yeast mutant grown on nitrate or the nitrate under-accumulation phenotype of clca knockout plants. Our results confirm the significance of this amino acid in the conserved selectivity filter of CLC proteins and highlight the importance of the proline in AtCLCa for nitrate metabolism in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Canales de Cloruro/metabolismo , Nitratos/metabolismo , Prolina/metabolismo , Secuencias de Aminoácidos/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Canales de Cloruro/genética , Prueba de Complementación Genética , Transporte Iónico , Potenciales de la Membrana , Datos de Secuencia Molecular , Mutación , Técnicas de Placa-Clamp , Prolina/genética , Protoplastos/metabolismo , Protoplastos/fisiología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Transfección
19.
Plant Physiol Biochem ; 168: 239-251, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34656860

RESUMEN

Nitrate and potassium nutrition is tightly coordinated in vascular plants. Physiological and molecular genetics studies have demonstrated that several NPF/NRT1 nitrate transporters have a significant impact on both uptake and the root-shoot partition of these nutrients. However, how these traits are biochemically connected remain controversial since some NPF proteins, e.g. NPF7.3/NRT1.5, have been suggested to mediate K+/H+ exchange instead of nitrate fluxes. Here we show that NPF6.2/NRT1.4, a protein that gates nitrate accumulation at the leaf petiole of Arabidopsis thaliana, also affects the root/shoot distribution of potassium. We demonstrate that NPF6.2/NRT1.4 is a plasma membrane nitrate transporter phosphorylated at threonine-98 by the CIPK23 protein kinase that is a regulatory hub for nitrogen and potassium nutrition. Heterologous expression of NPF6.2/NRT1.4 and NPF7.3/NRT1.5 in yeast mutants with altered potassium uptake and efflux systems showed no evidence of nitrate-dependent potassium transport by these proteins.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Transporte de Anión/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Mutación , Transportadores de Nitrato , Nitratos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Proteínas Quinasas
20.
J Biol Chem ; 284(39): 26526-32, 2009 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-19636075

RESUMEN

Nitrate, one of the major nitrogen sources for plants, is stored in the vacuole. Nitrate accumulation within the vacuole is primarily mediated by the NO(3)(-)/H(+) exchanger AtCLCa, which belongs to the chloride channel (CLC) family. Crystallography analysis of hCLC5 suggested that the C-terminal domain, composed by two cystathionine beta-synthetase motifs in all eukaryotic members of the CLC family is able to interact with ATP. However, interaction of nucleotides with a functional CLC protein has not been unambiguously demonstrated. Here we show that ATP reversibly inhibits AtCLCa by interacting with the C-terminal domain. Applying the patch clamp technique to isolated Arabidopsis thaliana vacuoles, we demonstrate that ATP reduces AtCLCa activity with a maximum inhibition of 60%. ATP inhibition of nitrate influx into the vacuole at cytosolic physiological nitrate concentrations suggests that ATP modulation is physiologically relevant. ADP and AMP do not decrease the AtCLCa transport activity; nonetheless, AMP (but not ADP) competes with ATP, preventing inhibition. A molecular model of the C terminus of AtCLCa was built by homology to hCLC5 C terminus. The model predicted the effects of mutations of the ATP binding site on the interaction energy between ATP and AtCLCa that were further confirmed by functional expression of site-directed mutated AtCLCa.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas de Arabidopsis/metabolismo , Canales de Cloruro/metabolismo , Adenosina Difosfato/farmacología , Adenosina Monofosfato/farmacología , Adenosina Trifosfato/farmacología , Algoritmos , Secuencia de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sitios de Unión/genética , Canales de Cloruro/química , Canales de Cloruro/genética , Relación Dosis-Respuesta a Droga , Transporte Iónico/efectos de los fármacos , Cinética , Potenciales de la Membrana/efectos de los fármacos , Modelos Moleculares , Datos de Secuencia Molecular , Nitratos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Protoplastos/citología , Protoplastos/metabolismo , Homología de Secuencia de Aminoácido , Electricidad Estática , Vacuolas/efectos de los fármacos , Vacuolas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA