Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 109(2): 610-5, 2012 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-22203976

RESUMEN

The type 1 ryanodine receptor (RyR1) is expressed widely in the brain, with high levels in the cerebellum, hippocampus, and hypothalamus. We have shown that L-type Ca(2+) channels in terminals of hypothalamic magnocellular neurons are coupled to RyRs, as they are in skeletal muscle, allowing voltage-induced Ca(2+) release (VICaR) from internal Ca(2+) stores without Ca(2+) influx. Here we demonstrate that RyR1 plays a role in VICaR in nerve terminals. Furthermore, in heterozygotes from the Ryr1(I4895T/WT) (IT/+) mouse line, carrying a knock-in mutation corresponding to one that causes a severe form of human central core disease, VICaR is absent, demonstrating that type 1 RyR mediates VICaR and that these mice have a neuronal phenotype. The absence of VICaR was shown in two ways: first, depolarization in the absence of Ca(2+) influx elicited Ca(2+)syntillas (scintilla, spark, in a nerve terminal, a SYNaptic structure) in WT, but not in mutant terminals; second, in the presence of extracellular Ca(2+), IT/+ terminals showed a twofold decrease in global Ca(2+) transients, with no change in plasmalemmal Ca(2+) current. From these studies we draw two conclusions: (i) RyR1 plays a role in VICaR in hypothalamic nerve terminals; and (ii) a neuronal alteration accompanies the myopathy in IT/+ mice, and, possibly in humans carrying the corresponding RyR1 mutation.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Calcio/metabolismo , Hipotálamo/citología , Miopatía del Núcleo Central/genética , Neuronas/metabolismo , Terminales Presinápticos/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética , Animales , Fluorescencia , Técnicas de Sustitución del Gen , Hipotálamo/metabolismo , Ratones , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
2.
J Neurosci ; 29(45): 14120-6, 2009 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-19906960

RESUMEN

Recently, highly localized Ca(2+) release events, similar to Ca(2+) sparks in muscle, have been observed in neuronal preparations. Specifically, in murine neurohypophysial terminals (NHT), these events, termed Ca(2+) syntillas, emanate from a ryanodine-sensitive intracellular Ca(2+) pool and increase in frequency with depolarization in the absence of Ca(2+) influx. Despite such knowledge of the nature of these Ca(2+) release events, their physiological role in this system has yet to be defined. Such localized Ca(2+) release events, if they occur in the precise location of the final exocytotic event(s), may directly trigger exocytosis. However, directly addressing this hypothesis has not been possible, since no method capable of visualizing individual release events in these CNS terminals has been available. Here, we have adapted an amperometric method for studying vesicle fusion to this system which relies on loading the secretory granules with the false transmitter dopamine, thus allowing, for the first time, the recording of individual exocytotic events from peptidergic NHT. Simultaneous use of this technique along with high-speed Ca(2+) imaging has enabled us to establish that spontaneous neuropeptide release and Ca(2+) syntillas do not display any observable temporal or spatial correlation, confirming similar findings in chromaffin cells. Although these results indicate that syntillas do not play a direct role in eliciting spontaneous release, they do not rule out indirect modulatory effects of syntillas on secretion.


Asunto(s)
Calcio/metabolismo , Exocitosis/fisiología , Neuronas/fisiología , Neurohipófisis/fisiología , Animales , Células Cromafines/fisiología , Dopamina/metabolismo , Capacidad Eléctrica , Técnicas In Vitro , Potenciales de la Membrana/fisiología , Ratones , Técnicas de Placa-Clamp
3.
J Neurosci ; 26(29): 7565-74, 2006 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-16855084

RESUMEN

Ca2+ stores were studied in a preparation of freshly dissociated terminals from hypothalamic magnocellular neurons. Depolarization from a holding level of -80 mV in the absence of extracellular Ca2+ elicited Ca2+ release from intraterminal stores, a ryanodine-sensitive process designated as voltage-induced Ca2+ release (VICaR). The release took one of two forms: an increase in the frequency but not the quantal size of Ca2+ syntillas, which are brief, focal Ca2+ transients, or an increase in global [Ca2+]. The present study provides evidence that the sensors of membrane potential for VICaR are dihydropyridine receptors (DHPRs). First, over the range of -80 to -60 mV, in which there was no detectable voltage-gated inward Ca2+ current, syntilla frequency was increased e-fold per 8.4 mV of depolarization, a value consistent with the voltage sensitivity of DHPR-mediated VICaR in skeletal muscle. Second, VICaR was blocked by the dihydropyridine antagonist nifedipine, which immobilizes the gating charge of DHPRs but not by Cd2+ or FPL 64176 (methyl 2,5 dimethyl-4[2-(phenylmethyl)benzoyl]-1H-pyrrole-3-carboxylate), a non-dihydropyridine agonist specific for L-type Ca2+ channels, having no effect on gating charge movement. At 0 mV, the IC50 for nifedipine blockade of VICaR in the form of syntillas was 214 nM in the absence of extracellular Ca2+. Third, type 1 ryanodine receptors, the type to which DHPRs are coupled in skeletal muscle, were detected immunohistochemically at the plasma membrane of the terminals. VICaR may constitute a new link between neuronal activity, as signaled by depolarization, and a rise in intraterminal Ca2+.


Asunto(s)
Canales de Calcio Tipo L/fisiología , Calcio/metabolismo , Terminaciones Nerviosas/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/fisiología , Animales , Agonistas de los Canales de Calcio/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo L/efectos de los fármacos , Membrana Celular/metabolismo , Estimulación Eléctrica , Electrofisiología , Hipotálamo/citología , Hipotálamo/metabolismo , Inmunohistoquímica , Técnicas In Vitro , Ratones , Neuronas/metabolismo , Nifedipino/farmacología , Pirroles/farmacología
4.
J Neurosci ; 24(5): 1226-35, 2004 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-14762141

RESUMEN

Localized, brief Ca2+ transients (Ca2+ syntillas) caused by release from intracellular stores were found in isolated nerve terminals from magnocellular hypothalamic neurons and examined quantitatively using a signal mass approach to Ca2+ imaging. Ca2+ syntillas (scintilla, L., spark, from a synaptic structure, a nerve terminal) are caused by release of approximately 250,000 Ca ions on average by a Ca2+ flux lasting on the order of tens of milliseconds and occur spontaneously at a membrane potential of -80 mV. Syntillas are unaffected by removal of extracellular Ca2+, are mediated by ryanodine receptors (RyRs) and are increased in frequency, in the absence of extracellular Ca2+, by physiological levels of depolarization. This represents the first direct demonstration of mobilization of Ca2+ from intracellular stores in neurons by depolarization without Ca2+ influx. The regulation of syntillas by depolarization provides a new link between neuronal activity and cytosolic [Ca2+] in nerve terminals.


Asunto(s)
Señalización del Calcio/fisiología , Calcio/metabolismo , Hipotálamo/citología , Neuronas/metabolismo , Terminales Presinápticos/metabolismo , Animales , Cafeína/farmacología , Señalización del Calcio/efectos de los fármacos , Hipotálamo/química , Potenciales de la Membrana/fisiología , Ratones , Neuronas/ultraestructura , Técnicas de Placa-Clamp , Terminales Presinápticos/química , Terminales Presinápticos/efectos de los fármacos , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Fracciones Subcelulares/química , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo
5.
J Gen Physiol ; 134(4): 267-80, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19786582

RESUMEN

A central concept in the physiology of neurosecretion is that a rise in cytosolic [Ca(2+)] in the vicinity of plasmalemmal Ca(2+) channels due to Ca(2+) influx elicits exocytosis. Here, we examine the effect on spontaneous exocytosis of a rise in focal cytosolic [Ca(2+)] in the vicinity of ryanodine receptors (RYRs) due to release from internal stores in the form of Ca(2+) syntillas. Ca(2+) syntillas are focal cytosolic transients mediated by RYRs, which we first found in hypothalamic magnocellular neuronal terminals. (scintilla, Latin for spark; found in nerve terminals, normally synaptic structures.) We have also observed Ca(2+) syntillas in mouse adrenal chromaffin cells. Here, we examine the effect of Ca(2+) syntillas on exocytosis in chromaffin cells. In such a study on elicited exocytosis, there are two sources of Ca(2+): one due to influx from the cell exterior through voltage-gated Ca(2+) channels, and that due to release from intracellular stores. To eliminate complications arising from Ca(2+) influx, we have examined spontaneous exocytosis where influx is not activated. We report here that decreasing syntillas leads to an increase in spontaneous exocytosis measured amperometrically. Two independent lines of experimentation each lead to this conclusion. In one case, release from stores was blocked by ryanodine; in another, stores were partially emptied using thapsigargin plus caffeine, after which syntillas were decreased. We conclude that Ca(2+) syntillas act to inhibit spontaneous exocytosis, and we propose a simple model to account quantitatively for this action of syntillas.


Asunto(s)
Glándulas Suprarrenales/metabolismo , Calcio/metabolismo , Células Cromafines/metabolismo , Exocitosis/fisiología , Animales , Señalización del Calcio , Células Cultivadas , Citosol/metabolismo , Masculino , Ratones , Neuronas/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Membranas Sinápticas/metabolismo
6.
Am J Physiol Heart Circ Physiol ; 292(1): H475-82, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16731637

RESUMEN

Coronary blood flow control is not uniform along the vascular tree and particularly between the right coronary artery and the left anterior descending artery. Resting membrane potential that contributes largely to the vascular tone is mainly regulated by K(+) channels in coronary myocytes. In the present study, we hypothesized that right coronary artery (RCA) and left coronary artery (LCA) exhibited a cell-specific function of K(+) channels. The net outward current was markedly greater in RCA compared with LCA cells, and this difference was due to a larger 4-aminopyridine (4-AP)-sensitive voltage-gated potssium (Kv) current in RCA cells, whereas the iberiotoxin (IbTx)-sensitive, large conductance Ca(2+)-dependent potassium (BK(Ca)) current was smaller in RCA cells. To go further in the molecular identity of this Kv current, we used 50 nM correolide, which specifically blocked Kv1 family alpha-subunits. Outward currents generated by ramp depolarization protocols were highly sensitive to correolide in both RCA and LCA cells, suggesting that Kv1 contributed for a large part to the net outward current. 4-AP-induced contractions in isolated RCA, and LCA were greater than IbTx-induced contraction. Furthermore, the 4-AP-induced contraction in RCA was significantly greater than that in LCA, which is in agreement with the electrophysiological data. Finally, the Kv1.2 alpha-subunit but not the Kv1.5 was detected in both RCA and LCA using primary specific antibody in Western blotting and immunofluorescence assay, and expression of Kv1.2 alpha-subunit was markedly higher in RCA compared with LCA. In summary, we reported for the first time a heterogeneous function and expression of Kv1 alpha-subunits in rat coronary myocytes isolated from RCA or LCA.


Asunto(s)
Vasos Coronarios/fisiología , Activación del Canal Iónico/fisiología , Potenciales de la Membrana/fisiología , Contracción Miocárdica/fisiología , Miocitos Cardíacos/fisiología , Canales de Potasio de la Superfamilia Shaker/fisiología , Función Ventricular , Animales , Células Cultivadas , Vasos Coronarios/citología , Ventrículos Cardíacos/citología , Masculino , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA