Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Hum Mol Genet ; 27(9): 1572-1592, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29474534

RESUMEN

Cyclin-dependent kinase like-5 (CDKL5) disorder is a rare neurodevelopmental disease caused by mutations in the CDKL5 gene. The consequent misexpression of the CDKL5 protein in the nervous system leads to a severe phenotype characterized by intellectual disability, motor impairment, visual deficits and early-onset epilepsy. No therapy is available for CDKL5 disorder. It has been reported that a protein transduction domain (TAT) is able to deliver macromolecules into cells and even into the brain when fused to a given protein. We demonstrate that TAT-CDKL5 fusion protein is efficiently internalized by target cells and retains CDKL5 activity. Intracerebroventricular infusion of TAT-CDKL5 restored hippocampal development, hippocampus-dependent memory and breathing pattern in Cdkl5-null mice. Notably, systemically administered TAT-CDKL5 protein passed the blood-brain-barrier, reached the CNS, and rescued various neuroanatomical and behavioral defects, including breathing pattern and visual responses. Our results suggest that CDKL5 protein therapy may be an effective clinical tool for the treatment of CDKL5 disorder.


Asunto(s)
Síndromes Epilépticos/metabolismo , Síndromes Epilépticos/terapia , Proteínas Serina-Treonina Quinasas/metabolismo , Espasmos Infantiles/metabolismo , Espasmos Infantiles/terapia , Animales , Encéfalo , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Ratones , Ratones Noqueados , Neuronas/metabolismo , Neuronas/patología , Proteínas Serina-Treonina Quinasas/genética
2.
Hum Mol Genet ; 25(18): 3887-3907, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27466189

RESUMEN

Cyclin-dependent kinase-like 5 (CDKL5) is a Ser/Thr protein kinase predominantly expressed in the brain. Mutations of the CDKL5 gene lead to CDKL5 disorder, a neurodevelopmental pathology that shares several features with Rett Syndrome and is characterized by severe intellectual disability. The phosphorylation targets of CDKL5 are largely unknown, which hampers the discovery of therapeutic strategies for improving the neurological phenotype due to CDKL5 mutations. Here, we show that the histone deacetylase 4 (HDAC4) is a direct phosphorylation target of CDKL5 and that CDKL5-dependent phosphorylation promotes HDAC4 cytoplasmic retention. Nuclear HDAC4 binds to chromatin as well as to MEF2A transcription factor, leading to histone deacetylation and altered neuronal gene expression. By using a Cdkl5 knockout (Cdkl5 -/Y) mouse model, we found that hypophosphorylated HDAC4 translocates to the nucleus of neural precursor cells, thereby reducing histone 3 acetylation. This effect was reverted by re-expression of CDKL5 or by inhibition of HDAC4 activity through the HDAC4 inhibitor LMK235. In Cdkl5 -/Y mice treated with LMK235, defective survival and maturation of neuronal precursor cells and hippocampus-dependent memory were fully normalized. These results demonstrate a critical role of HDAC4 in the neurodevelopmental alterations due to CDKL5 mutations and suggest the possibility of HDAC4-targeted pharmacological interventions.


Asunto(s)
Histona Desacetilasas/biosíntesis , Discapacidad Intelectual/genética , Proteínas Serina-Treonina Quinasas/genética , Síndrome de Rett/genética , Espasmos Infantiles/genética , Animales , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/administración & dosificación , Síndromes Epilépticos , Regulación de la Expresión Génica/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/crecimiento & desarrollo , Hipocampo/patología , Histona Desacetilasas/efectos de los fármacos , Histona Desacetilasas/genética , Humanos , Discapacidad Intelectual/tratamiento farmacológico , Discapacidad Intelectual/fisiopatología , Factores de Transcripción MEF2/genética , Ratones , Ratones Noqueados , Mutación , Células-Madre Neurales/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/patología , Fosforilación , Síndrome de Rett/tratamiento farmacológico , Síndrome de Rett/patología , Espasmos Infantiles/tratamiento farmacológico , Espasmos Infantiles/patología
4.
Neurobiol Dis ; 82: 298-310, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26143616

RESUMEN

Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have been identified in a rare neurodevelopmental disorder characterized by early-onset seizures, severe developmental delay, intellectual disability and Rett syndrome-like features. CDKL5 is highly expressed in the brain during early postnatal stages, suggesting its importance for brain maturation. Using a newly-generated Cdkl5 knockout (Cdkl5 -/Y) mouse, we recently found that loss of Cdkl5 impairs postnatal hippocampal development with a reduction in neuronal precursor survival and maturation. These defects were accompanied by increased activity of the glycogen synthase kinase 3ß (GSK3ß) a crucial inhibitory regulator of many neurodevelopmental processes. The goal of the current study was to establish whether inhibition of GSK3ß corrects hippocampal developmental defects due to Cdkl5 loss. We found that treatment with the GSK3ß inhibitor SB216763 restored neuronal precursor survival, dendritic maturation, connectivity and hippocampus-dependent learning and memory in the Cdkl5 -/Y mouse. Importantly, these effects were retained one month after treatment cessation. At present, there are no therapeutic strategies to improve the neurological defects of subjects with CDKL5 disorder. Current results point at GSK3ß inhibitors as potential therapeutic tools for the improvement of abnormal brain development in CDKL5 disorder.


Asunto(s)
Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Hipocampo/efectos de los fármacos , Indoles/farmacología , Discapacidades para el Aprendizaje/tratamiento farmacológico , Maleimidas/farmacología , Fármacos Neuroprotectores/farmacología , Proteínas Serina-Treonina Quinasas/deficiencia , Animales , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Modelos Animales de Enfermedad , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Hipocampo/enzimología , Hipocampo/crecimiento & desarrollo , Hipocampo/patología , Discapacidades para el Aprendizaje/enzimología , Discapacidades para el Aprendizaje/patología , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Ratones Noqueados , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/enzimología , Células-Madre Neurales/patología , Neurogénesis/efectos de los fármacos , Neurogénesis/fisiología , Neuronas/efectos de los fármacos , Neuronas/enzimología , Neuronas/patología , Nootrópicos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/genética , Memoria Espacial
5.
Brain ; 137(Pt 2): 380-401, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24334313

RESUMEN

Intellectual impairment is a strongly disabling feature of Down's syndrome, a genetic disorder of high prevalence (1 in 700-1000 live births) caused by trisomy of chromosome 21. Accumulating evidence shows that widespread neurogenesis impairment is a major determinant of abnormal brain development and, hence, of intellectual disability in Down's syndrome. This defect is worsened by dendritic hypotrophy and connectivity alterations. Most of the pharmacotherapies designed to improve cognitive performance in Down's syndrome have been attempted in Down's syndrome mouse models during adult life stages. Yet, as neurogenesis is mainly a prenatal event, treatments aimed at correcting neurogenesis failure in Down's syndrome should be administered during pregnancy. Correction of neurogenesis during the very first stages of brain formation may, in turn, rescue improper brain wiring. The aim of our study was to establish whether it is possible to rescue the neurodevelopmental alterations that characterize the trisomic brain with a prenatal pharmacotherapy with fluoxetine, a drug that is able to restore post-natal hippocampal neurogenesis in the Ts65Dn mouse model of Down's syndrome. Pregnant Ts65Dn females were treated with fluoxetine from embryonic Day 10 until delivery. On post-natal Day 2 the pups received an injection of 5-bromo-2-deoxyuridine and were sacrificed after either 2 h or after 43 days (at the age of 45 days). Untreated 2-day-old Ts65Dn mice exhibited a severe neurogenesis reduction and hypocellularity throughout the forebrain (subventricular zone, subgranular zone, neocortex, striatum, thalamus and hypothalamus), midbrain (mesencephalon) and hindbrain (cerebellum and pons). In embryonically treated 2-day-old Ts65Dn mice, precursor proliferation and cellularity were fully restored throughout all brain regions. The recovery of proliferation potency and cellularity was still present in treated Ts65Dn 45-day-old mice. Moreover, embryonic treatment restored dendritic development, cortical and hippocampal synapse development and brain volume. Importantly, these effects were accompanied by recovery of behavioural performance. The cognitive deficits caused by Down's syndrome have long been considered irreversible. The current study provides novel evidence that a pharmacotherapy with fluoxetine during embryonic development is able to fully rescue the abnormal brain development and behavioural deficits that are typical of Down's syndrome. If the positive effects of fluoxetine on the brain of a mouse model are replicated in foetuses with Down's syndrome, fluoxetine, a drug usable in humans, may represent a breakthrough for the therapy of intellectual disability in Down's syndrome.


Asunto(s)
Encéfalo/efectos de los fármacos , Encéfalo/embriología , Modelos Animales de Enfermedad , Síndrome de Down/tratamiento farmacológico , Fluoxetina/administración & dosificación , Neurogénesis/efectos de los fármacos , Atención Prenatal/métodos , Animales , Animales Recién Nacidos , Encéfalo/crecimiento & desarrollo , Proliferación Celular/efectos de los fármacos , Síndrome de Down/patología , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neurogénesis/fisiología , Embarazo
6.
Neurobiol Dis ; 67: 24-36, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24636797

RESUMEN

Intellectual disability in Down syndrome (DS) appears to be related to severe neurogenesis impairment during brain development. The molecular mechanisms underlying this defect are still largely unknown. Accumulating evidence has highlighted the importance of GSK3ß signaling for neuronal precursor proliferation/differentiation. In neural precursor cells (NPCs) from Ts65Dn mice and human fetuses with DS, we found reduced GSK3ß phosphorylation and, hence, increased GSK3ß activity. In cultures of trisomic subventricular-zone-derived adult NPCs (aNPCs) we found that deregulation of GSK3ß activity was due to higher levels of the AICD fragment of the trisomic gene APP that directly bound to GSK3ß. We restored GSK3ß phosphorylation in trisomic aNPCs using either lithium, a well-known GSK3ß inhibitor, or using a 5-HT receptor agonist or fluoxetine, which activated the serotonin receptor 5-HT1A. Importantly, this effect was accompanied by restoration of proliferation, cell fate specification and neuronal maturation. In agreement with results obtained in vitro, we found that early treatment with fluoxetine, which was previously shown to rescue neurogenesis and behavior in Ts65Dn mice, restored GSK3ß phosphorylation. These results provide a link between GSK3ß activity alteration, APP triplication and the defective neuronal production that characterizes the DS brain. Knowledge of the molecular mechanisms underlying neurogenesis alterations in DS may help to devise therapeutic strategies, potentially usable in humans. Results suggest that drugs that increase GSK3ß phosphorylation, such as lithium or fluoxetine, may represent useful tools for the improvement of neurogenesis in DS.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/enzimología , Síndrome de Down/enzimología , Glucógeno Sintasa Quinasa 3/metabolismo , Células-Madre Neurales/enzimología , Neurogénesis , Animales , Encéfalo/metabolismo , Proliferación Celular , Modelos Animales de Enfermedad , Síndrome de Down/metabolismo , Femenino , Feto , Glucógeno Sintasa Quinasa 3 beta , Humanos , Ratones , Ratones Transgénicos , Células-Madre Neurales/metabolismo , Fosforilación
7.
Neurobiol Dis ; 70: 53-68, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24952363

RESUMEN

Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have been identified in a neurodevelopmental disorder characterized by early-onset intractable seizures, severe developmental delay, intellectual disability, and Rett's syndrome-like features. Since the physiological functions of CDKL5 still need to be elucidated, in the current study we took advantage of a new Cdkl5 knockout (KO) mouse model in order to shed light on the role of this gene in brain development. We mainly focused on the hippocampal dentate gyrus, a region that largely develops postnatally and plays a key role in learning and memory. Looking at the process of neurogenesis, we found a higher proliferation rate of neural precursors in Cdkl5 KO mice in comparison with wild type mice. However, there was an increase in apoptotic cell death of postmitotic granule neuron precursors, with a reduction in total number of granule cells. Looking at dendritic development, we found that in Cdkl5 KO mice the newly-generated granule cells exhibited a severe dendritic hypotrophy. In parallel, these neurodevelopmental defects were associated with impairment of hippocampus-dependent memory. Looking at the mechanisms whereby CDKL5 exerts its functions, we identified a central role of the AKT/GSK-3ß signaling pathway. Overall our findings highlight a critical role of CDKL5 in the fundamental processes of brain development, namely neuronal precursor proliferation, survival and maturation. This evidence lays the basis for a better understanding of the neurological phenotype in patients carrying mutations in the CDKL5 gene.


Asunto(s)
Dendritas/fisiología , Glucógeno Sintasa Quinasa 3/metabolismo , Neuronas/fisiología , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Apoptosis/fisiología , Aumento de la Célula , Supervivencia Celular/fisiología , Células Cultivadas , Giro Dentado/crecimiento & desarrollo , Giro Dentado/fisiología , Femenino , Glucógeno Sintasa Quinasa 3 beta , Masculino , Aprendizaje por Laberinto/fisiología , Ratones Noqueados , Células-Madre Neurales/fisiología , Neurogénesis/fisiología , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA